Beiglböck, Mathias; Lim, Tongseok; Obłój, Jan Dual attainment for the martingale transport problem. (English) Zbl 1470.49071 Bernoulli 25, No. 3, 1640-1658 (2019). Summary: We investigate existence of dual optimizers in one-dimensional martingale optimal transport problems. While the first author et al. established such existence for weak (quasi-sure) duality [Ann. Probab. 45, No. 5, 3038–3074 (2017; Zbl 1417.60032)], in [Finance Stoch. 17, No. 3, 477–501 (2013; Zbl 1277.91162)], the first author et al. showed existence for the natural stronger (pointwise) duality may fail even in regular cases. We establish that (pointwise) dual maximizers exist when \(y\mapsto c(x,y)\) is convex, or equivalent to a convex function. It follows that when marginals are compactly supported, the existence holds when the cost \(c(x,y)\) is twice continuously differentiable in \(y\). Further, this may not be improved as we give examples with \(c(x,\cdot)\in C^{2-\varepsilon}\), \(\varepsilon>0\), where dual attainment fails. Finally, when measures are compactly supported, we show that dual optimizers are Lipschitz if \(c\) is Lipschitz. Cited in 15 Documents MSC: 49Q22 Optimal transportation 49N15 Duality theory (optimization) 60G46 Martingales and classical analysis 91G15 Financial markets Keywords:dual attainment; Kantorovich duality; martingale optimal transport; robust mathematical finance Citations:Zbl 1417.60032; Zbl 1277.91162 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Beiglböck, M., Cox, A.M.G. and Huesmann, M. (2017). Optimal transport and Skorokhod embedding. Invent. Math.208 327-400. · Zbl 1371.60072 [2] Beiglböck, M., Henry-Labordère, P. and Penkner, F. (2013). Model-independent bounds for option prices—A mass transport approach. Finance Stoch.17 477-501. · Zbl 1277.91162 [3] Beiglböck, M. and Juillet, N. (2016). On a problem of optimal transport under marginal martingale constraints. Ann. Probab.44 42-106. · Zbl 1348.49045 [4] Beiglböck, M. and Nutz, M. (2014). Martingale inequalities and deterministic counterparts. Electron. J. Probab.19 no. 95, 15. · Zbl 1307.60044 [5] Beiglböck, M., Nutz, M. and Touzi, N. (2017). Complete duality for martingale optimal transport on the line. Ann. Probab.45 3038-3074. · Zbl 1417.60032 [6] Beiglböck, M. and Pratelli, A. (2012). Duality for rectified cost functions. Calc. Var. Partial Differential Equations45 27-41. · Zbl 1254.28001 [7] Campi, L., Laachir, I. and Martini, C. (2017). Change of numeraire in the two-marginals martingale transport problem. Finance Stoch.21 471-486. · Zbl 1369.91174 [8] Dolinsky, Y. and Soner, H.M. (2014). Martingale optimal transport and robust hedging in continuous time. Probab. Theory Related Fields160 391-427. · Zbl 1305.91215 [9] Galichon, A., Henry-Labordère, P. and Touzi, N. (2014). A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options. Ann. Appl. Probab.24 312-336. · Zbl 1285.49012 [10] Ghoussoub, N., Kim, Y.-H. and Lim, T. (2019). Structure of optimal martingale transport plans in general dimensions. Ann. Probab.47 109-164. · Zbl 1447.60070 [11] Henry-Labordère, P., Obłój, J., Spoida, P. and Touzi, N. (2016). The maximum maximum of a martingale with given \(n\) marginals. Ann. Appl. Probab.26 1-44. · Zbl 1337.60078 [12] Hobson, D. (2011). The Skorokhod embedding problem and model-independent bounds for option prices. In Paris-Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Math.2003 267-318. Berlin: Springer. · Zbl 1214.91113 [13] Hobson, D. and Klimmek, M. (2015). Robust price bounds for the forward starting straddle. Finance Stoch.19 189-214. · Zbl 1396.91735 [14] Hobson, D. and Neuberger, A. (2012). Robust bounds for forward start options. Math. Finance22 31-56. · Zbl 1278.91162 [15] Jacod, J. and Mémin, J. (1981). Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité. In Séminaire de Probabilités XV. Lecture Notes in Math.850 529-546. Cham: Springer. · Zbl 0458.60016 [16] Obłój, J. (2004). The Skorokhod embedding problem and its offspring. Probab. Surv.1 321-390. · Zbl 1189.60088 [17] Obłój, J., Spoida, P. and Touzi, N. (2015). Martingale inequalities for the maximum via pathwise arguments. In In Memoriam Marc Yor—Séminaire de Probabilités XLVII. Lecture Notes in Math.2137 227-247. Cham: Springer. · Zbl 1336.60083 [18] Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Stat.36 423-439. · Zbl 0135.18701 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.