×

zbMATH — the first resource for mathematics

A reaction coefficient identification problem for fractional diffusion. (English) Zbl 1461.35241

MSC:
35R30 Inverse problems for PDEs
35J25 Boundary value problems for second-order elliptic equations
35R11 Fractional partial differential equations
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Software:
TIGRA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alt W 1991 Stability for parameter estimation in two-point boundary value problems Optimization22 99-111
[2] Banjai L, Melenk J M, Nochetto R H, Otárola E, Salgado A J and Schwab Ch 2018 Tensor FEM for spectral fractional diffusion Found. Comput. Math. https://doi.org/10.1007/s10208-018-9402-3
[3] Banks H T and Kunisch K 1989 Estimation Techniques for Distributed Parameter Systems. Systems and Control: Foundations and Applications vol 1 (Boston, MA: Birkhäuser Boston)
[4] Benning M and Burger M 2018 Modern regularization methods for inverse problems Acta Numer.27 1-111
[5] Birman M Š and Solomjak M Z 1980 Spektralnaya Teoriya Samosopryazhennykh Operatorov v Gilbertovom Prostranstve (Leningrad: Leningrad University)
[6] Brändle C, Colorado E, de Pablo A and Sánchez U 2013 A concave-convex elliptic problem involving the fractional Laplacian Proc. R. Soc. Edinburgh A 143 39-71
[7] Brezis H 2011 Functional Analysis, Sobolev Spaces and Partial Differential Equations(Universitext) (New York: Springer)
[8] Bucur C and Valdinoci E 2016 Nonlocal Diffusion and Applications(Lecture Notes of the Unione Matematica Italiana vol 20) (Cham: Springer)
[9] Cabré X and Sire Y 2015 Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions Trans. Am. Math. Soc.367 911-41
[10] Cabré X and Tan J 2010 Positive solutions of nonlinear problems involving the square root of the Laplacian Adv. Math.224 2052-93
[11] Caffarelli L and Silvestre L 2007 An extension problem related to the fractional Laplacian Commun. PDE32 1245-60
[12] Caffarelli L A and Vasseur A 2010 Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation Ann. Math.171 1903-30
[13] Caffarelli L A and Stinga P R 2016 Fractional elliptic equations, Caccioppoli estimates and regularity Ann. Inst. Henri Poincaré33 767-807
[14] Capella A, Dávila J, Dupaigne L and Sire Y 2011 Regularity of radial extremal solutions for some non-local semilinear equations Commun. PDE36 1353-84
[15] Casas E and Tröltzsch F 2002 Error estimates for the finite-element approximation of a semilinear elliptic control problem Control Cybernet.31 695-712
[16] Chavent G 2009 Nonlinear Least Squares for Inverse Problems. Theoretical Foundations and Step-by-Step Guide for Applications(Scientific Computation) (New York: Springer)
[17] Chen W 2006 A speculative study of 2/3-order fractional Laplacian modeling of turbulence: some thoughts and conjectures Chaos16 1-11
[18] Chen W and Holm S 2004 Fractional laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency J. Acoust. Soc. Am.115 1424-30
[19] Colonius F and Kunisch K 1986 Stability for parameter estimation in two-point boundary value problems J. Reine Angew. Math.370 1-29
[20] Colton D and Kress R 2013 Inverse Acoustic and Electromagnetic Scattering Theory(Applied Mathematical Sciences vol 93) 3rd edn (New York: Springer) (https://doi.org/10.1007/978-1-4614-4942-3)
[21] Du Q, Gunzburger M, Lehoucq R B and Zhou K 2012 Analysis and approximation of nonlocal diffusion problems with volume constraints SIAM Rev.54 667-96
[22] Duoandikoetxea J 2001 Fourier Analysis(Graduate Studies in Mathematics vol 29) (Providence, RI: American Mathematical Society) (Translated and revised from the 1995 Spanish original by David Cruz-Uribe)
[23] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems(Mathematics and its Applications vol 375) (Dordrecht: Kluwer)
[24] Engl H W, Kunisch K and Neubauer A 1989 Convergence rates for Tikhonov regularisation of non-linear ill-posed problems Inverse Problems5 523
[25] Ern A and Guermond J L 2004 Theory and Practice of Finite Elements(Applied Mathematical Sciences vol 159) (New York: Springer)
[26] Fabes E B, Kenig C E and Serapioni R P 1982 The local regularity of solutions of degenerate elliptic equations Commun. PDE7 77-116
[27] Folland G B 1999 Real Analysis(Pure and Applied Mathematics) 2nd edn (New York: Wiley)
[28] Fujiwara D 1967 Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order Proc. Japan Acad.43 82-6
[29] Gatto P and Hesthaven J S 2015 Numerical approximation of the fractional laplacian via hp-finite elements, with an application to image denoising J. Sci. Comput.65 249-70
[30] Gilbarg D and Trudinger N S 2001 Elliptic Partial Differential Equations of Second Order(Classics in Mathematics) (Berlin: Springer)
[31] Gilboa G and Osher S 2008 Nonlocal operators with applications to image processing Multiscale Model. Simul.7 1005-28
[32] Gol’dshtein V and Ukhlov A 2009 Weighted Sobolev spaces and embedding theorems Trans. Am. Math. Soc.361 3829-50
[33] Grisvard P 2011 Elliptic Problems in Nonsmooth Domains(Classics in Applied Mathematics vol 69) (Philadelphia, PA: SIAM)
[34] Hào D N and Quyen T N T 2010 Convergence rates for tikhonov regularization of coefficient identification problems in laplace-type equations Inverse Problems26 125014
[35] Hào D N and Quyen T N T 2012 Convergence rates for Tikhonov regularization of a two-coefficient identification problem in an elliptic boundary value problem Numer. Math.120 45-77
[36] Hinze M, Kaltenbacher B and Quyen T N T 2018 Identifying conductivity in electrical impedance tomography with total variation regularization Numer. Math.138 723-65
[37] Kaltenbacher B and Hofmann B 2010 Convergence rates for the iteratively regularized Gauss-Newton method in Banach spaces Inverse Problems26 035007
[38] Kaltenbacher B and Klassen A 2018 On convergence and convergence rates for Ivanov and Morozov regularization and application to some parameter identification problems in elliptic PDEs Inverse Problems34 055008
[39] Kato T 1995 Perturbation Theory for Linear Operators(Classics in Mathematics) (Berlin: Springer)
[40] Kinderlehrer G and Stampacchia D 1980 An Introduction to Variational Inequalities and their Applications(Pure and Applied Mathematics vol 88) (New York: Academic)
[41] Kiselev A, Nazarov F and Volberg A 2007 Global well-posedness for the critical 2d dissipative quasi-geostrophic equation Inventory Math.167 445-53
[42] Kröner A and Vexler B 2009 A priori error estimates for elliptic optimal control problems with a bilinear state equation J. Comput. Appl. Math.230 781-802
[43] Kufner A and Opic B 1984 How to define reasonably weighted Sobolev spaces Comment. Math. Univ. Carolinae25 537-54
[44] Levendorskii S Z 2004 Pricing of the American put under Lévy processes Int. J. Theor. Appl. Finance7 303-35
[45] McLean W 2000 Strongly Elliptic Systems and Boundary Integral Equations (Cambridge: Cambridge University Press)
[46] Molica Bisci G, Radulescu V D and Servadei R 2016 Variational Methods for Nonlocal Fractional Problems(Encyclopedia of Mathematics and its Applications vol 162) (Cambridge: Cambridge University Press)
[47] Muckenhoupt B 1972 Weighted norm inequalities for the Hardy maximal function Trans. Am. Math. Soc.165 207-26
[48] Natterer F, Sielschott H, Dorn O, Dierkes T and Palamodov V 2002 Frchet derivatives for some bilinear inverse problems SIAM J. Appl. Math.62 2092-113
[49] Neubauer A 1992 Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales Appl. Anal.46 59-72
[50] Nochetto R H, Otárola E and Salgado A J 2015 A PDE approach to fractional diffusion in general domains: a priori error analysis Found. Comput. Math.15 733-91
[51] Nochetto R H, Otárola E and Salgado A J 2015 A PDE approach to numerical fractional diffusion Proc. of the 8th Int. Congress on Industrial and Applied Mathematics (Beijing: Higher Education Press)
[52] Nochetto R H, Otárola E and Salgado A J 2016 A PDE approach to space-time fractional parabolic problems SIAM J. Numer. Anal.54 848-73
[53] Otárola E 2014 A PDE approach to numerical fractional diffusion PhD Thesis University of Maryland, College Park
[54] Quyen T N T 2018 Variational method for multiple parameter identification in elliptic pdes J. Math. Anal. Appl.461 676-700
[55] Ramlau R 2003 TIGRA-an iterative algorithm for regularizing nonlinear ill-posed problems Inverse Problems19 433
[56] Resmerita E and Scherzer O 2006 Error estimates for non-quadratic regularization and the relation to enhancement Inverse Problems22 801-14
[57] Roubí ček T 2013 Nonlinear Partial Differential Equations with Applications(International Series of Numerical Mathematics vol 153) 2nd edn (Basel: Birkhäuser)
[58] Schuster T, Kaltenbacher B, Hofmann B and Kazimierski K S 2012 Regularization Methods in Banach Spaces(Radon Series on Computational and Applied Mathematics vol 10) (Berlin: de Gruyter & Co)
[59] Silling S A 2017 Why peridynamics? Handbook of Peridynamic Modeling(Advances in Applied Mathematics) (Boca Raton, FL: CRC Press)
[60] Stinga P R and Torrea J L 2010 Extension problem and Harnack’s inequality for some fractional operators Commun. PDE35 2092-122
[61] Tarantola A 2005 Inverse Problem Theory and Methods for Model Parameter Estimation (Philadelphia: SIAM)
[62] Tröltzsch F 2010 Optimal Control of Partial Differential Equations(Graduate Studies in Mathematics vol 112) (Providence, RI: American Mathematical Society)
[63] Turesson B O 2000 Nonlinear Potential Theory and Weighted Sobolev Spaces(Lecture Notes in Mathematics vol 1736) (Berlin: Springer)
[64] Vázquez J L 2014 Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators Discrete Continuous Dyn. Syst. S 7 857-85
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.