×

zbMATH — the first resource for mathematics

On structure constants with two spinning twist-two operators. (English) Zbl 1415.81072
Summary: I consider three-point functions of one protected and two unprotected twist-two operators with spin in \( \mathcal{N}=4\) SYM at weak coupling. At one loop I formulate an empiric conjecture for the dependence of the corresponding structure constants on the spins of the operators. Using such an ansatz and some input from explicit perturbative results, I fix completely various infinite sets of one-loop structure constants of these three-point functions. Finally, I determine the two-loop corrections to the structure constants for a few fixed values of the spins of the operators.

MSC:
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
81R12 Groups and algebras in quantum theory and relations with integrable systems
Software:
LiteRed; FIRE; FIRE5
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] B. Basso, S. Komatsu and P. Vieira, Structure constants and integrable bootstrap in planar N = 4 SYM theory,arXiv:1505.06745[INSPIRE].
[2] Beisert, N.; etal., Review of AdS/CFT integrability: an overview, Lett. Math. Phys., 99, 3, (2012) · Zbl 1268.81126
[3] B. Eden and A. Sfondrini, Three-point functions in\( \mathcal{N}=4 \)SYM: the hexagon proposal at three loops, JHEP02 (2016) 165 [arXiv:1510.01242] [INSPIRE]. · Zbl 1388.81517
[4] B. Basso, V. Goncalves, S. Komatsu and P. Vieira, Gluing hexagons at three loops, Nucl. Phys.B 907 (2016) 695 [arXiv:1510.01683] [INSPIRE]. · Zbl 1336.81052
[5] B. Eden and F. Paul, Half-BPS half-BPS twist two at four loops in N = 4 SYM, arXiv:1608.04222 [INSPIRE].
[6] Gonçalves, V., Extracting OPE coefficient of Konishi at four loops, JHEP, 03, 079, (2017) · Zbl 1377.81171
[7] Basso, B.; Goncalves, V.; Komatsu, S., Structure constants at wrapping order, JHEP, 05, 124, (2017) · Zbl 1380.81289
[8] Georgoudis, A.; Goncalves, V.; Pereira, R., Konishi OPE coefficient at the five loop order, JHEP, 11, 184, (2018) · Zbl 1405.81129
[9] B. Eden and A. Sfondrini, Tessellating cushions: four-point functions in\( \mathcal{N}=4 \)SYM, JHEP10 (2017) 098 [arXiv:1611.05436] [INSPIRE]. · Zbl 1383.81290
[10] Fleury, T.; Komatsu, S., Hexagonalization of correlation functions, JHEP, 01, 130, (2017) · Zbl 1373.81323
[11] Fleury, T.; Komatsu, S., Hexagonalization of correlation functions II: two-particle contributions, JHEP, 02, 177, (2018) · Zbl 1387.81349
[12] B. Basso et al., Asymptotic four point functions, arXiv:1701.04462 [INSPIRE].
[13] D. Chicherin, A. Georgoudis, V. Gonçalves and R. Pereira, All five-loop planar four-point functions of half-BPS operators in\( \mathcal{N}=4 \)SYM, JHEP11 (2018) 069 [arXiv:1809.00551] [INSPIRE]. · Zbl 1404.81252
[14] F. Coronado, Perturbative four-point functions in planar\( \mathcal{N}=4 \)SYM from hexagonalization, JHEP01 (2019) 056 [arXiv:1811.00467] [INSPIRE]. · Zbl 1409.81142
[15] T. Bargheer et al., Handling handles: nonplanar integrability in = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett.121 (2018) 231602 [arXiv:1711.05326] [INSPIRE].
[16] Eden, B.; Jiang, Y.; Plat, D.; Sfondrini, A., Colour-dressed hexagon tessellations for correlation functions and non-planar corrections, JHEP, 02, 170, (2018) · Zbl 1387.81348
[17] T. Bargheer et al., Handling handles. Part II. Stratification and data analysis, JHEP11 (2018) 095 [arXiv:1809.09145] [INSPIRE]. · Zbl 1404.81216
[18] J. Plefka and K. Wiegandt, Three-point functions of twist-two operators in N = 4 SYM at one loop, JHEP10 (2012) 177 [arXiv:1207.4784] [INSPIRE]. · Zbl 1397.81395
[19] Bianchi, MS, A note on three-point functions of unprotected operators, JHEP, 03, 154, (2019) · Zbl 1414.81193
[20] N. Drukker and J. Plefka, The Structure of n-point functions of chiral primary operators in N = 4 super Yang-Mills at one-loop, JHEP04(2009) 001 [arXiv:0812.3341] [INSPIRE].
[21] A.V. Kotikov, L.N. Lipatov and V.N. Velizhanin, Anomalous dimensions of Wilson operators in N = 4 SYM theory, Phys. Lett.B 557 (2003) 114 [hep-ph/0301021] [INSPIRE].
[22] A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett.B 595 (2004) 521 [Erratum ibid.B 632 (2006) 754] [hep-th/0404092] [INSPIRE].
[23] Staudacher, M., The factorized S-matrix of CFT/AdS, JHEP, 05, 054, (2005)
[24] B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech.0611 (2006) P11014 [hep-th/0603157] [INSPIRE].
[25] A.V. Belitsky, G.P. Korchemsky and D. Mueller, Towards Baxter equation in supersymmetric Yang-Mills theories, Nucl. Phys.B 768 (2007) 116 [hep-th/0605291] [INSPIRE].
[26] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech.0701 (2007) P01021 [hep-th/0610251] [INSPIRE].
[27] V.N. Velizhanin, Three-loop renormalization of the N = 1, N = 2, N = 4 supersymmetric Yang-Mills theories, Nucl. Phys.B 818 (2009) 95 [arXiv:0809.2509] [INSPIRE].
[28] A.V. Belitsky et al., Anomalous dimensions of leading twist conformal operators, Phys. Rev.D 77 (2008) 045029 [arXiv:0707.2936] [INSPIRE].
[29] Sotkov, GM; Zaikov, RP, Conformal invariant two point and three point functions for fields with arbitrary spin, Rept. Math. Phys., 12, 375, (1977)
[30] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE].
[31] Tkachov, FV, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett., 100B, 65, (1981)
[32] A.V. Smirnov, Algorithm FIREFeynman Integral REduction, JHEP10 (2008) 107 [arXiv:0807.3243] [INSPIRE].
[33] Smirnov, AV; Smirnov, VA, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun., 184, 2820, (2013) · Zbl 1344.81031
[34] Smirnov, AV, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun., 189, 182, (2015) · Zbl 1344.81030
[35] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[36] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
[37] S. Laporta and E. Remiddi, The Analytical value of the electron (\(g\) − 2) at order α3in QED, Phys. Lett.B 379 (1996) 283 [hep-ph/9602417] [INSPIRE].
[38] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[39] B. Eden, Three-loop universal structure constants in N = 4 SUSY Yang-Mills theory, arXiv:1207.3112 [INSPIRE].
[40] F.A. Dolan and H. Osborn, Conformal partial wave expansions for N = 4 chiral four point functions, Annals Phys.321 (2006) 581 [hep-th/0412335] [INSPIRE].
[41] D.A. Kosower, Direct solution of integration-by-parts systems, Phys. Rev.D 98 (2018) 025008 [arXiv:1804.00131] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.