Sert, Cagri Large deviation principle for random matrix products. (English) Zbl 1466.60063 Ann. Probab. 47, No. 3, 1335-1377 (2019). Summary: Under a Zariski density assumption, we extend the classical theorem of Cramér on large deviations of sums of i.i.d. real random variables to random matrix products. Cited in 10 Documents MSC: 60F10 Large deviations 20P05 Probabilistic methods in group theory 22E46 Semisimple Lie groups and their representations Keywords:large deviation principle; random matrix products; reductive groups; joint spectrum × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Abels, H., Margulis, G. A. and Soĭfer, G. A. (1995). Semigroups containing proximal linear maps. Israel J. Math.91 1-30. · Zbl 0845.22004 · doi:10.1007/BF02761637 [2] Bahadur, R. R. (1971). Some Limit Theorems in Statistics. SIAM, Philadelphia, PA. · Zbl 0257.62015 [3] Benoist, Y. (1996). Actions propres sur les espaces homogènes réductifs. Ann. of Math. (2) 144 315-347. · Zbl 0868.22013 [4] Benoist, Y. (1997). Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal.7 1-47. · Zbl 0947.22003 [5] Benoist, Y. (2000). Propriétés asymptotiques des groupes linéaires. II. In Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Okayama-Kyoto (1997). Adv. Stud. Pure Math.26 33-48. Math. Soc. Japan, Tokyo. · Zbl 0960.22012 [6] Benoist, Y. and Labourie, F. (1993). Sur les difféomorphismes d’Anosov affines à feuilletages stable et instable différentiables. Invent. Math.111 285-308. · Zbl 0777.58029 · doi:10.1007/BF01231289 [7] Benoist, Y. and Quint, J.-F. (2016). Random Walks on Reductive Groups. Springer, Cham. · Zbl 1366.60002 [8] Benoist, Y. and Quint, J.-F. (2016). Central limit theorem for linear groups. Ann. Probab.44 1308-1340. · Zbl 1341.22006 · doi:10.1214/15-AOP1002 [9] Bougerol, P. and Lacroix, J. (1985). Products of Random Matrices with Applications to Schrödinger Operators. Progress in Probability and Statistics8. Birkhäuser, Boston, MA. · Zbl 0572.60001 [10] Breuillard, E. and Gelander, T. (2007). A topological Tits alternative. Ann. of Math. (2) 166 427-474. · Zbl 1149.20039 · doi:10.4007/annals.2007.166.427 [11] Bruhat, F. and Tits, J. (1972). Groupes réductifs sur un corps local. Publ. Math. Inst. Hautes Études Sci. 41 5-251. · Zbl 0254.14017 [12] Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability38. Springer, Berlin. · Zbl 1177.60035 [13] Furstenberg, H. (1973). Boundary theory and stochastic processes on homogeneous spaces. In Harmonic Analysis on Homogeneous Spaces. 193-229. Amer. Math. Soc., Providence, RI. · Zbl 0289.22011 [14] Furstenberg, H. and Kesten, H. (1960). Products of random matrices. Ann. Math. Stat.31 457-469. · Zbl 0137.35501 · doi:10.1214/aoms/1177705909 [15] Goldsheid, I. and Margulis, G. (1989). Lyapunov indices of a product of random matrices. Russian Math. Surveys44 11-81. · Zbl 0705.60012 [16] Goldsheid, I. Y. and Guivarc’h, Y. (1996). Zariski closure and the dimension of the Gaussian law of the product of random matrices. I. Probab. Theory Related Fields105 109-142. · Zbl 0854.60006 · doi:10.1007/BF01192073 [17] Guivarc’h, Y. (2008). On the spectrum of a large subgroup of a semisimple group. J. Mod. Dyn.2 15-42. · Zbl 1166.22007 [18] Guivarc’h, Y. and Le Page, É. (2016). Spectral gap properties for linear random walks and Pareto’s asymptotics for affine stochastic recursions. Ann. Inst. Henri Poincaré Probab. Stat.52 503-574. · Zbl 1357.60010 [19] Le Page, É. (1982). Théorèmes limites pour les produits de matrices aléatoires. In Probability Measures on Groups (Oberwolfach, 1981). Lecture Notes in Math.928 258-303. Springer, Berlin. · Zbl 0506.60019 [20] Prasad, G. (1994). \( \mathbf{R} \)-regular elements in Zariski-dense subgroups. Q. J. Math.45 541-545. · Zbl 0828.22010 [21] Quint, J.-F. (2002). Cônes limites des sous-groupes discrets des groupes réductifs sur un corps local. Transform. Groups7 247-266. · Zbl 1018.22004 · doi:10.1007/s00031-002-0013-2 [22] Quint, J.-F. (2002). Divergence exponentielle des sous-groupes discrets en rang supérieur. Comment. Math. Helv.77 563-608. · Zbl 1010.22018 · doi:10.1007/s00014-002-8352-0 [23] Rota, G.-C. and Strang, G. (1960). A note on the joint spectral radius. Indag. Math.22 379-381. · Zbl 0095.09701 [24] Sert, C. (2017). Joint spectrum and large deviation principle for random matrix products. C. R. Math. Acad. Sci. Paris355 718-722. · Zbl 1373.60017 · doi:10.1016/j.crma.2017.04.015 [25] Tits, J. (1971). Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque. J. Reine Angew. Math.247 196-220. · Zbl 0227.20015 [26] Tits, J. (1972). Free subgroups in linear groups. J. Algebra20 250-270. · Zbl 0236.20032 · doi:10.1016/0021-8693(72)90058-0 [27] Tutubalin, V. N. (1977). A central limit theorem for products of random matrices and some of its applications. In Symposia Mathematica. 21 101-116. Academic Press, London. · Zbl 0375.60029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.