zbMATH — the first resource for mathematics

Four moments theorems on Markov chaos. (English) Zbl 1466.60041
Summary: We obtain quantitative four moments theorems establishing convergence of the laws of elements of a Markov chaos to a Pearson distribution, where the only assumption we make on the Pearson distribution is that it admits four moments. These results are obtained by first proving a general carré du champ bound on the distance between laws of random variables in the domain of a Markov diffusion generator and invariant measures of diffusions, which is of independent interest, and making use of the new concept of chaos grade. For the heavy-tailed Pearson distributions, this seems to be the first time that sufficient conditions in terms of (finitely many) moments are given in order to converge to a distribution that is not characterized by its moments.

60F05 Central limit and other weak theorems
60J35 Transition functions, generators and resolvents
60J99 Markov processes
Full Text: DOI Euclid arXiv
[1] Avram, F., Leonenko, N. N. and Šuvak, N. (2013). On spectral analysis of heavy-tailed Kolmogorov–Pearson diffusions. Markov Process. Related Fields19 249–298. · Zbl 1306.60110
[2] Azmoodeh, E., Campese, S. and Poly, G. (2014). Fourth Moment Theorems for Markov diffusion generators. J. Funct. Anal.266 2341–2359. · Zbl 1292.60078
[3] Bakry, D. (2014). Symmetric diffusions with polynomial eigenvectors. In Stochastic Analysis and Applications 2014. Springer Proc. Math. Stat.100 25–49. Springer, Cham. · Zbl 1390.60024
[4] Bakry, D. and Émery, M. (1985). Diffusions hypercontractives. In Séminaire de Probabilités, XIX, 1983/84. Lecture Notes in Math.1123 177–206. Springer, Berlin.
[5] Bakry, D., Gentil, I. and Ledoux, M. (2014). Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 348. Springer, Cham. · Zbl 1376.60002
[6] Bibby, B. M., Skovgaard, I. M. and Sørensen, M. (2005). Diffusion-type models with given marginal distribution and autocorrelation function. Bernoulli11 191–220. · Zbl 1066.60071
[7] Bouleau, N. and Hirsch, F. (1991). Dirichlet Forms and Analysis on Wiener Space. De Gruyter Studies in Mathematics14. de Gruyter, Berlin. · Zbl 0748.60046
[8] Dudley, R. M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Mathematics74. Cambridge Univ. Press, Cambridge. · Zbl 1023.60001
[9] Eden, R. and Víquez, J. (2015). Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions. Stochastic Process. Appl.125 182–216. · Zbl 1301.60015
[10] Forman, J. L. and Sørensen, M. (2008). The Pearson diffusions: A class of statistically tractable diffusion processes. Scand. J. Stat.35 438–465. · Zbl 1198.62078
[11] Fukushima, M., Oshima, Y. and Takeda, M. (2011). Dirichlet Forms and Symmetric Markov Processes, extended ed. De Gruyter Studies in Mathematics19. de Gruyter, Berlin. · Zbl 1227.31001
[12] Hu, Y., Nualart, D. and Zhou, H. (2017). Parameter estimation for fractional Ornstein–Uhlenbeck processes of general hurst parameter. Stat. Inference Stoch. Process. To appear. · Zbl 1419.62211
[13] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1, 2nd ed. Wiley, New York. · Zbl 0811.62001
[14] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, Vol. 2, 2nd ed. Wiley, New York. · Zbl 0821.62001
[15] Kim, Y. T. and Park, H. S. (2017). Optimal Berry–Esseen bound for statistical estimations and its application to SPDE. J. Multivariate Anal.155 284–304. · Zbl 1358.60042
[16] Kusuoka, S. and Tudor, C. A. (2012). Stein’s method for invariant measures of diffusions via Malliavin calculus. Stochastic Process. Appl.122 1627–1651. · Zbl 1242.60023
[17] Ledoux, M. (2012). Chaos of a Markov operator and the fourth moment condition. Ann. Probab.40 2439–2459. · Zbl 1266.60042
[18] Mazet, O. (1997). Classification des semi-groupes de diffusion sur \(\textbf{R}\) associés à une famille de polynômes orthogonaux. In Séminaire de Probabilités, XXXI. Lecture Notes in Math.1655 40–53. Springer, Berlin. · Zbl 0883.60072
[19] Nourdin, I. and Peccati, G. (2009). Noncentral convergence of multiple integrals. Ann. Probab.37 1412–1426. · Zbl 1171.60323
[20] Nourdin, I. and Peccati, G. (2009). Stein’s method on Wiener chaos. Probab. Theory Related Fields145 75–118. · Zbl 1175.60053
[21] Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics192. Cambridge Univ. Press, Cambridge. · Zbl 1266.60001
[22] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Springer, Berlin. · Zbl 1099.60003
[23] Nualart, D. and Ortiz-Latorre, S. (2008). Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl.118 614–628. · Zbl 1142.60015
[24] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab.33 177–193. · Zbl 1097.60007
[25] Pearson, K. (1895). Contributions to the mathematical theory of evolution—II. Skew variation in homogeneous material. Philos. Trans. R. Soc. Lond. Ser. A186 343–414.
[26] Stein, C. (1986). Approximate Computation of Expectations. Institute of Mathematical Statistics Lecture Notes—Monograph Series7. IMS, Hayward, CA. · Zbl 0721.60016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.