×

Separating cycles and isoperimetric inequalities in the uniform infinite planar quadrangulation. (English) Zbl 1414.05267

Summary: We study geometric properties of the infinite random lattice called the uniform infinite planar quadrangulation or UIPQ. We establish a precise form of a conjecture of M. Krikun [“Local structure of random quadrangulations”, Preprint, arXiv:math/0512304] stating that the minimal size of a cycle that separates the ball of radius \(R\) centered at the root vertex from infinity grows linearly in \(R\). As a consequence, we derive certain isoperimetric bounds showing that the boundary size of any simply connected set \(A\) consisting of a finite union of faces of the UIPQ and containing the root vertex is bounded below by a (random) constant times \(|A|^{1/4}(\log|A|)^{-(3/4)-\delta}\), where the volume \(|A|\) is the number of faces in \(A\).

MSC:

05C80 Random graphs (graph-theoretic aspects)
60D05 Geometric probability and stochastic geometry

References:

[1] Angel, O. (2003). Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal.13 935-974. · Zbl 1039.60085 · doi:10.1007/s00039-003-0436-5
[2] Angel, O. and Schramm, O. (2003). Uniform infinite planar triangulations. Comm. Math. Phys.241 191-213. · Zbl 1098.60010 · doi:10.1007/s00220-003-0932-3
[3] Chassaing, P. and Durhuus, B. (2006). Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab.34 879-917. · Zbl 1102.60007 · doi:10.1214/009117905000000774
[4] Chassaing, P. and Schaeffer, G. (2004). Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields128 161-212. · Zbl 1041.60008 · doi:10.1007/s00440-003-0297-8
[5] Curien, N. and Le Gall, J.-F. First passage percolation and local modifications of distances in random triangulations. (2015). Ann. Sci. Éc. Norm. Supér. To appear. Available at arXiv:1511.04264.
[6] Curien, N. and Le Gall, J.-F. (2014). The Brownian plane. J. Theoret. Probab.27 1249-1291. · Zbl 1305.05208 · doi:10.1007/s10959-013-0485-0
[7] Curien, N. and Le Gall, J.-F. (2016). The hull process of the Brownian plane. Probab. Theory Related Fields166 187-231. · Zbl 1347.05226 · doi:10.1007/s00440-015-0652-6
[8] Curien, N. and Le Gall, J.-F. (2017). Scaling limits for the peeling process on random maps. Ann. Inst. Henri Poincaré Probab. Stat.53 322-357. · Zbl 1358.05255 · doi:10.1214/15-AIHP718
[9] Curien, N., Ménard, L. and Miermont, G. (2013). A view from infinity of the uniform infinite planar quadrangulation. ALEA Lat. Am. J. Probab. Math. Stat.10 45-88. · Zbl 1277.05151
[10] Curien, N. and Miermont, G. (2015). Uniform infinite planar quadrangulations with a boundary. Random Structures Algorithms47 30-58. · Zbl 1351.60011 · doi:10.1002/rsa.20531
[11] Flajolet, P. and Sedgewick, R. (2009). Analytic Combinatorics. Cambridge Univ. Press, Cambridge. · Zbl 1165.05001
[12] Gwynne, E. and Miller, J. (2017). Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology. Electron. J. Probab.22 Paper No. 84, 47. · Zbl 1378.60030
[13] Krikun, K. Local structure of random quadrangulations. (2005). Preprint. Available at arXiv:math/0512304.
[14] Krikun, M. A. (2004). A uniformly distributed infinite planar triangulation and a related branching process. J. Math. Sci. (N. Y.) 131 5520-5537.
[15] Le Gall, J.-F. and Miermont, G. (2012). Scaling limits of random trees and planar maps. In Probability and Statistical Physics in Two and More Dimensions. Clay Math. Proc.15 155-211. Amer. Math. Soc., Providence, RI. · Zbl 1321.05240
[16] Lyons, R. and Peres, Y. (2016). Probability on Trees and Networks. Cambridge Series in Statistical and Probabilistic Mathematics42. Cambridge Univ. Press, New York.
[17] Ménard, L. Volumes in the uniform infinite planar triangulation: From skeletons to generating functions. (2018). Combin. Probab. Comput.27 946-973. · Zbl 1402.05193 · doi:10.1017/S0963548318000093
[18] Ménard, L. (2010). The two uniform infinite quadrangulations of the plane have the same law. Ann. Inst. Henri Poincaré Probab. Stat.46 190-208. · Zbl 1201.60009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.