×

Cutoff phenomenon for the asymmetric simple exclusion process and the biased card shuffling. (English) Zbl 1466.60152

Summary: We consider the biased card shuffling and the Asymmetric Simple Exclusion Process (ASEP) on the segment. We obtain the asymptotic of their mixing times: our results show that these two continuous-time Markov chains display cutoff. Our analysis combines several ingredients including: a study of the hydrodynamic profile for ASEP, the use of monotonic eigenfunctions, stochastic comparisons and concentration inequalities.

MSC:

60J27 Continuous-time Markov processes on discrete state spaces
37A25 Ergodicity, mixing, rates of mixing
82C22 Interacting particle systems in time-dependent statistical mechanics

References:

[1] Bahadoran, C. (2012). Hydrodynamics and hydrostatics for a class of asymmetric particle systems with open boundaries. Comm. Math. Phys.310 1-24. · Zbl 1247.82038 · doi:10.1007/s00220-011-1395-6
[2] Bardos, C., le Roux, A. Y. and Nédélec, J.-C. (1979). First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations4 1017-1034. · Zbl 0418.35024 · doi:10.1080/03605307908820117
[3] Benassi, A. and Fouque, J.-P. (1987). Hydrodynamical limit for the asymmetric simple exclusion process. Ann. Probab.15 546-560. · Zbl 0623.60120 · doi:10.1214/aop/1176992158
[4] Benjamini, I., Berger, N., Hoffman, C. and Mossel, E. (2005). Mixing times of the biased card shuffling and the asymmetric exclusion process. Trans. Amer. Math. Soc.357 3013-3029. · Zbl 1071.60095 · doi:10.1090/S0002-9947-05-03610-X
[5] Bertini, L. and Giacomin, G. (1997). Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys.183 571-607. · Zbl 0874.60059 · doi:10.1007/s002200050044
[6] Bhakta, P., Miracle, S., Randall, D. and Streib, A. P. (2012). Mixing times of Markov chains for self-organizing lists and biased permutations. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms 1-15. SIAM, Philadelphia, PA. · Zbl 1423.60109
[7] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York. · Zbl 0944.60003
[8] Bürger, R., Frid, H. and Karlsen, K. H. (2007). On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition. J. Math. Anal. Appl.326 108-120. · Zbl 1160.35048 · doi:10.1016/j.jmaa.2006.02.072
[9] Caputo, P., Lacoin, H., Martinelli, F., Simenhaus, F. and Toninelli, F. L. (2012). Polymer dynamics in the depinned phase: Metastability with logarithmic barriers. Probab. Theory Related Fields153 587-641. · Zbl 1262.60093 · doi:10.1007/s00440-011-0355-6
[10] Caputo, P., Liggett, T. M. and Richthammer, T. (2010). Proof of Aldous’ spectral gap conjecture. J. Amer. Math. Soc.23 831-851. · Zbl 1203.60145 · doi:10.1090/S0894-0347-10-00659-4
[11] Derrida, B. and Lebowitz, J. L. (1998). Exact large deviation function in the asymmetric exclusion process. Phys. Rev. Lett.80 209-213. · Zbl 0954.60093 · doi:10.1103/PhysRevLett.80.209
[12] Diaconis, P. and Shahshahani, M. (1987). Time to reach stationarity in the Bernoulli-Laplace diffusion model. SIAM J. Math. Anal.18 208-218. · Zbl 0617.60009 · doi:10.1137/0518016
[13] Ferrari, P. L. (2008). The universal \(\text{Airy}_1\) and \(\text{Airy}_2\) processes in the totally asymmetric simple exclusion process. In Integrable Systems and Random Matrices. Contemp. Math.458 321-332. Amer. Math. Soc., Providence, RI. · Zbl 1145.82332
[14] Gärtner, J. (1988). Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stochastic Process. Appl.27 233-260. · Zbl 0643.60094
[15] Greenberg, S., Pascoe, A. and Randall, D. (2009). Sampling biased lattice configurations using exponential metrics. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms 76-85. SIAM, Philadelphia, PA. · Zbl 1421.68175
[16] Haddadan, S. and Winkler, P. (2017). Mixing of permutations by biased transposition. In 34th Symposium on Theoretical Aspects of Computer Science. LIPIcs. Leibniz Int. Proc. Inform.66 Art. No. 41, 13. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern. · Zbl 1402.60091
[17] Kipnis, C. and Landim, C. (1999). Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin. · Zbl 0927.60002
[18] Labbé, C. (2017). Weakly asymmetric bridges and the KPZ equation. Comm. Math. Phys.353 1261-1298. · Zbl 1368.60102 · doi:10.1007/s00220-017-2875-0
[19] Labbé, C. and Lacoin, H. Mixing time and cutoff for the Weakly Asymmetric Simple Exclusion Process. Preprint. Available at arXiv:1805.12213. · Zbl 1472.60127
[20] Lacoin, H. (2016). Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion. Ann. Probab.44 1426-1487. · Zbl 1408.60061 · doi:10.1214/15-AOP1004
[21] Lacoin, H. (2016). The cutoff profile for the simple exclusion process on the circle. Ann. Probab.44 3399-3430. · Zbl 1410.37008 · doi:10.1214/15-AOP1053
[22] Lee, T.-Y. and Yau, H.-T. (1998). Logarithmic Sobolev inequality for some models of random walks. Ann. Probab.26 1855-1873. · Zbl 0943.60062 · doi:10.1214/aop/1022855885
[23] Lesigne, E. and Volný, D. (2001). Large deviations for martingales. Stochastic Process. Appl.96 143-159. · Zbl 1059.60033
[24] Levin, D. A. and Peres, Y. (2016). Mixing of the exclusion process with small bias. J. Stat. Phys.165 1036-1050. · Zbl 1360.82061 · doi:10.1007/s10955-016-1664-z
[25] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. · Zbl 1160.60001
[26] Liggett, T. M. (2005). Interacting Particle Systems. Springer, Berlin. · Zbl 1103.82016
[27] Málek, J., Nečas, J., Rokyta, M. and Ružička, M. (1996). Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation13. Chapman & Hall, London. · Zbl 0851.35002
[28] Otto, F. (1996). Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci., Sér. I Math.322 729-734. · Zbl 0852.35013
[29] Rezakhanlou, F. (1991). Hydrodynamic limit for attractive particle systems on \(\mathbf{Z}^d \). Comm. Math. Phys.140 417-448. · Zbl 0738.60098 · doi:10.1007/BF02099130
[30] Rost, H. (1981). Nonequilibrium behaviour of a many particle process: Density profile and local equilibria. Z. Wahrsch. Verw. Gebiete58 41-53. · Zbl 0451.60097 · doi:10.1007/BF00536194
[31] Vovelle, J. (2002). Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math.90 563-596. · Zbl 1007.65066 · doi:10.1007/s002110100307
[32] Wilson, D. B. (2004). Mixing times of Lozenge tiling and card shuffling Markov chains. Ann. Appl. Probab.14 274-325. · Zbl 1040.60063 · doi:10.1214/aoap/1075828054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.