zbMATH — the first resource for mathematics

The computation of the 3-modular characters of the Fischer group \(Fi_{23}\). (English) Zbl 07068034
Summary: We determine the 35 irreducible 3-modular characters of the Fischer group \(Fi_{23}\). This completes the calculation of all modular character tables of this group.
20-XX Group theory and generalizations
11-XX Number theory
22-XX Topological groups, Lie groups
Full Text: DOI
[1] Breuer, [Breuer 2012] T., The GAP Character Table Library, (2012)
[2] Breuer, [Breuer et al. 2016] T.; Hiss, G.; Lübeck, G.; Lux, K.; Müller, J.; Parker, R.; Wilson, R., The Modular Atlas project
[3] Conway, [Conway et al. 1985] J.; Curtis, R.; Norton, S.; Parker, R.; Wilson, R., Atlas of Finite Groups, (1985), Oxford, England: Clarendon Press, Oxford, England
[4] Hiss, [Hiss and Lux 1989] G.; Lux, K., Brauer Trees of Sporadic Groups, (1989), New York: Oxford Science Publications, New York · Zbl 0685.20013
[5] Hiss, [Hiss and Lux 1994] G.; Lux, K., The 5-Modular Characters of the Sporadic Simple Fischer Groups Fi_{22} and Fi_{23}, Comm. Algebra, 22, 9, 3563-3590, (1994) · Zbl 0806.20011
[6] Hiss, [Hiss et al. 2006] G.; Neunhöffer, M.; Noeske, F., The 2-Modular Characters of the Fischer Group Fi_{23}, J. Algebra, 300, 2, 555-570, (2006) · Zbl 1102.20011
[7] Isaacs, [Isaacs 1994] I. M., Corrected reprint of the 1976 original, Character Theory of Finite Groups, (1994), New York: Dover Publications Inc., New York
[8] Jansen, [Jansen et al. 1995] C.; Lux, K.; Parker, R.; Wilson, R., An Atlas of Brauer Characters, 11, (1995), New York: Oxford University Press, New York
[9] Lux, [Lux et al. 1994] K.; Müller, J.; Ringe, M., Peakword Condensation and Submodule Lattices: An Application of the MEAT-AXE, J. Symbolic Comput., 17, 6, 529-544, (1994) · Zbl 0828.16001
[10] Lux, [Lux et al. 2012] K.; Neunhöffer, M.; Noeske, F., Condensation of Homomorphism Spaces,, LMS J. Comput. Math., 15, 140-157, (2012) · Zbl 1296.20010
[11] Lux, [Lux and Pahlings 2010] K.; Pahlings, H., Representations of Groups: A Computational Approach, 124, (2010), Cambridge: Cambridge University Press, Cambridge
[12] Lux, [Lux and Wiegelmann 1998] K.; Wiegelmann, M., Condensing tensor product modules, The atlas of finite groups: ten years on (Birmingham, 1995), 249, 174-190, (1998), Cambridge: Cambridge Univ Press, Cambridge · Zbl 0905.20003
[13] Müller, [Müller et al. 2014] J.; Neunhöffer, M.; Noeske, F., orb, a GAP package, (2014)
[14] Müller, [Müller et al. 2007] J.; Neunhöffer, M.; Wilson, R. A., Enumerating Big Orbits and an Application: B Acting on the Cosets of Fi_{23}, J. Algebra, 314, 1, 75-96, (2007) · Zbl 1134.20007
[15] Neunhöffer, [Neunhöffer and Noeske, 2016a] M.; Noeske, F., Chop – new and improved. unpublished. GAP package, (2016)
[16] Neunhöffer, [Neunhöffer and Noeske, 2016b] M.; Noeske, F., Cond – a package for computing condensations. unpublished. GAP package, (2016)
[17] Noeske, [Noeske 2005] F., Morita-Äquivalenzen in der algorithmischen Darstellungstheorie, (2005), RWTH Aachen University
[18] Parker, [Parker 1984] R., The computer calculation of modular characters. (the meat-axe), Computational group theory (Durham, 1982), 267-274, (1984), London: Academic Press, London · Zbl 0555.20001
[19] Ringe, [Ringe 1994] M., The C-Meataxe, Manual, (1994), Aachen: RWTH Aachen University, Aachen
[20] Wilson, [Wilson et al. 2016] R.; Parker, R.; Nickerson, S.; Bray, J., ATLAS of Finite Group Representations, (2016)
[21] Wilson, [Wilson et al. 2011] R.; Parker, R.; Nickerson, S.; Bray, J.; Breuer, T., AtlasRep, a GAP interface to the atlas of group representations, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.