zbMATH — the first resource for mathematics

Strong delay-independent stability of linear delay systems. (English) Zbl 1415.93185
Summary: This paper presents a new necessary and sufficient condition for testing the strong delay-independent stability of linear systems subject to a single delay. The proposed method follows from the use of matrix polynomials constraints and the Kalman-Yakubovich-Popov lemma. The resulting condition can be checked exactly by solving a feasibility problem in terms of a linear matrix inequality (LMI). Simple numerical examples are given to show the effectiveness of the proposed method.
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C05 Linear systems in control theory
LMI toolbox; SDPT3
Full Text: DOI
[1] Niculescu, S. I., Delay effects on stability: a robust control approach, Volume 269 of Lecture Notes in Control and Information Sciences, (2001), Springer: Springer Berlin, Germany
[2] Gu, K.; Kharitonov, V.; Chen, J., Stability of time-delay systems, Birkhäuser, Boston, MA, (2003) · Zbl 1039.34067
[3] Fridman, E., Introduction to Time-delay Systems: Analysis and Control, 1st Edition, (2014), Systems & Control: Foundations & Applications: Systems & Control: Foundations & Applications Birkhäuser Basel
[4] Kao, C. Y.; Rantzer, A., Stability analysis of systems with uncertain time-varying delays, Automatica, 43, 6, 959-970, (2007) · Zbl 1282.93203
[5] Li, X.; Gao, H., A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis, IEEE Trans. Automat. Control, 56, 9, 2172-2178, (2011) · Zbl 1368.93102
[6] Souza, F. O., Further improvement in stability criteria for linear systems with interval time-varying delay, IET Control Theory Appl., 7, 3, 440-446, (2013)
[7] Veenman, J.; Scherer, C. W.; Köroğlu, H., Robust stability and performance analysis with integral quadratic constraints, Eur. J. Control, 31, 1-32, (2016) · Zbl 1347.93199
[8] Jun, M.; Safonov, M. G., IQC robustness analysis for time-delay systems, Int. J. Robust Nonlinear Control, 11, 15, 1455-1468, (2001) · Zbl 1017.93078
[9] Liu, K.; Seuret, A., Comparison of bounding methods for stability analysis of systems with time-varying delays, J. Frankl. Inst., 354, 2979-2993, (2017) · Zbl 1364.93738
[10] Zhang, X. M.; Han, G. L.; Seuret, A.; Gouaisbaut, F., An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delays, Automatica, 76, 138-142, (2017)
[11] Ding, L.; He, Y.; Wu, M.; Zhang, Z., A novel delay partitioning method for stability analysis of interval time-varying delay systems, J. Frankl. Inst., 354, 1209-1219, (2017) · Zbl 1355.93138
[12] Chen, J.; Park, J.; Xu, S., Stability analysis of continuous-time systems with time-varying delay using new Lyapunov-Krasovskii functionals, J. Frankl. Inst., 355, 5957-5967, (2018) · Zbl 1451.93336
[13] Gouaisbaut, F.; Ariba, Y.; Seuret, A.; Peaucelle, D., Stability analysis of time-delay systems via Bessel inequality: a quadratic separation approach, Int. J. Robust Nonlinear Control, 28, 1507-1527, (2018) · Zbl 1390.93653
[14] Bliman, P. A., Lyapunov equation for the stability of linear delay systems of retarded and neutral type, IEEE Trans. Automat. Control, 47, 2, 327-335, (2002) · Zbl 1364.34101
[15] Chen, J.; Latchman, H., Frequency sweeping tests for stability independent of delay, IEEE Trans. Automat. Control, 40, 9, 1640-1645, (1995) · Zbl 0834.93044
[16] Kharitonov, V. L., Robust stability analysis of time delay systems: a survey, Ann. Rev. Control, 23, 1, 185-196, (1999)
[17] Li, X.; Gao, H.; Gu, K., Delay-independent stability analysis of linear time-delay systems based on frequency discretization, Automatica, 70, 288-294, (2016) · Zbl 1339.93089
[18] Souza, F. O.; de Oliveira, M. C.; Palhares, R. M., Stability independent of delay using rational functions, Automatica, 45, 2128-2133, (2009) · Zbl 1175.93195
[19] Souza, F. O.; de Oliveira, M. C.; Palhares, R. M., A simple necessary and sufficient LMI condition for the strong delay-independent stability of LTI systems with single delay, Automatica, 89, 407-410, (2018) · Zbl 1388.93076
[20] Sarachik, P. E., Principles of Linear Systems, 1st Edition, (1997), Cambridge University Press: Cambridge University Press Cambridge
[21] Bernstein, D. S., Matrix Mathematics: Theory, Facts, and Formulas, (2009), Princeton University Press: Princeton University Press New Jersey · Zbl 1183.15001
[22] Kamen, E., Linear systems with commensurate time delays: stability and stabilization independent of delay, IEEE Trans. Automat. Control, 27, 2, 367-375, (1982) · Zbl 0517.93047
[23] Bliman, P. A., Nonconservative LMI approach to robust stability for systems with uncertain scalar parameters, Proceedings of the 41st IEEE Conference on Decision and Control, 2002., Vol. 1, 305-310, (2002)
[24] Zhang, X.; Tsiotras, P.; Iwasaki, T., Parameter-dependent Lyapunov functions for exact stability analysis of single-parameter dependent LTI systems, Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, 5168-5173, (2003)
[25] Rantzer, A., On the Kalman-Yakubovich-Popov lemma, Syst. Control Lett., 28, 1, 7-10, (1996) · Zbl 0866.93052
[26] Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M., LMI Control Toolbox User’s Guide, (1995), The Math Works Inc.: The Math Works Inc. Natick, MA
[27] Toh, K. C.; Todd, M. J.; Tütüncü, R. H., SDPT3-a Matlab software package for semidefinite programming, Version 1.3, Optim. Methods Softw., 11, 1-4, 545-581, (1999) · Zbl 0997.90060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.