Almost f-algebras and d-algebras. (English) Zbl 0707.06009

By definition, a lattice ordered algebra A is an f-algebra if \(a\bot b\) (that is, \(| a| \wedge | b| =0)\Rightarrow\) ca\(\bot b\) and ac\(\bot b\) for all a,b,c\(\in A\), an almost f-algebra if \(a\bot b\Rightarrow\) \(ab=0\) for all a,b\(\in A\), and a d-algebra if \(a\bot b\Rightarrow\) ac\(\bot bc\) for all a,b,c\(\in A\). Every f-algebra is an almost f-algebra and a d-algebra, but there are almost f-algebras that are not d-algebras and vice versa. The authors present algebraic proofs of several known properties of almost f-algebras. For example, it is shown that Archimedean almost f-algebras are commutative, and every element a in the nil-radical of an Archimedean f-algebra satisfies \(a^ 3=0\). The proofs in this paper are interesting even for f-algebras, because they do not use the representation theory.
Reviewer: R.S.Pierce


06F25 Ordered rings, algebras, modules
46A40 Ordered topological linear spaces, vector lattices
Full Text: DOI


[1] Bigard, Groupes et Anneaux R?ticul?s 608 (1977) · doi:10.1007/BFb0067004
[2] Birkhoff, Lattice Theory (1967)
[3] Zaanen, Riesz Spaces 2 (1983)
[4] Viswanathan, J. Reine Angew. Math. 235 pp 78– (1969)
[5] Steinberg, J. Austral. Math. Soc. Ser. A 22 pp 362– (1976)
[6] Steinberg, Gruppi e Anelli Ordinati XXI pp 379– (1977)
[7] Scorza, Mem. Reale Accad. Scienze Fis. Mat. Napoli 20 (1935)
[8] DOI: 10.1007/BF01214199 · Zbl 0439.46037 · doi:10.1007/BF01214199
[9] Luxemburg, Riesz Spaces 1 (1971)
[10] Luxemburg, Some Aspects of the Theory of Riesz Spaces 4 (1979) · Zbl 0431.46003
[11] DOI: 10.1016/0022-247X(86)90340-9 · Zbl 0604.47024 · doi:10.1016/0022-247X(86)90340-9
[12] DOI: 10.2307/1998601 · Zbl 0483.06009 · doi:10.2307/1998601
[13] Kudl??ek, Sborn? Vysok?ho U?eni Techn. ? Brn? 1?2 pp 179– (1962)
[14] Diem, Pacific J. Math. 25 pp 71– (1968) · Zbl 0157.08004 · doi:10.2140/pjm.1968.25.71
[15] Birkhoff, An. Acad. Brasil. Ci?nc. 28 pp 41– (1956)
[16] Bernau, Proc. Cambridge Philos. Soc. 61 pp 613– (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.