Galaktionov, V. A. Exact estimates of amplitude and support of unbounded solutions of a nonlinear heat equation with a source. (Russian) Zbl 0707.35007 Zh. Vychisl. Mat. Mat. Fiz. 30, No. 3, 438-448 (1990). Estimates for the \(L^{\infty}\)-norm and for the support of the solution of the parabolic equation: \(u_ t=(u^{\nabla}u_ x)_ x+u^{\sigma +1}\), \(u(0,x)=u_ 0(x)\geq 0\), \(\sigma >0\) are given. Reviewer: D.Tătaru Cited in 1 Review MSC: 35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs 35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations 35K55 Nonlinear parabolic equations 35B45 A priori estimates in context of PDEs Keywords:nonlinear heat equation; \(L^{\infty }\)-norm; support PDF BibTeX XML Cite \textit{V. A. Galaktionov}, Zh. Vychisl. Mat. Mat. Fiz. 30, No. 3, 438--448 (1990; Zbl 0707.35007)