×

Admissible wave fans in nonlinear hyperbolic systems. (English) Zbl 0707.35091

The quasi-linear hyperbolic system \[ \partial_ tU(x,t)+\partial_ xF(U(x,t))=0 \] is investigated. The author describes several well known conditions for admissible shock waves and wave fans (i.e. solutions U(x,t) of the form \(U(x,t)=V(x/t)).\)
The main object of the paper is the discussion of the entropy rate admissibility criterion for wave fans, which was introduced by the author [J. Differ. Equations 14, 202-212 (1973; Zbl 0262.35038)]. In particular, it is shown that the entropy condition implies the admissibility criterion of Liu for wave fans of moderate strength.
Reviewer: L.Brüll

MSC:

35L67 Shocks and singularities for hyperbolic equations

Citations:

Zbl 0262.35038
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Burton, C. V., On plane and spherical sound-waves of finite amplitude. Philosophical Magazine, Ser. 5, 35, 317–333 (1893). · JFM 25.1603.02
[2] Coleman, B. D., Thermodynamics of materials with memory. Arch. Rational Mech. Analysis 17, 1–46 (1964).
[3] Coleman, B. D., & W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Analysis 13, 167–177 (1963). · Zbl 0113.17802
[4] Conlon, J., & T.-P. Liu, Admissibility criteria for hyperbolic conservation laws. Indiana U. Math. J. 30, 641–652 (1981). · Zbl 0587.58048
[5] Dafermos, C. M., The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Diff. Eqs. 14, 202–212 (1973). · Zbl 0262.35038
[6] Dafermos, C. M., Solution of the Riemann problem for a class of hyperbolic conservation laws by the viscosity method. Arch. Rational Mech. Analysis 52, 1–9 (1973). · Zbl 0262.35034
[7] Dafermos, C. M., Structure of solutions of the Riemann problem for hyperbolic systems of conservation laws. Arch. Rational Mech. Analysis 53, 203–217 (1974). · Zbl 0278.35065
[8] Dafermos, C. M., & R. J. DiPerna, The Riemann problem for certain classes of hyperbolic systems of conservation laws. J. Diff. Eqs. 20, 90–114 (1976). · Zbl 0323.35050
[9] DiPerna, R. J., Singularities of solutions of nonlinear hyperbolic systems of conservation laws. Arch. Rational Mech. Analysis 60, 75–100 (1975). · Zbl 0324.35062
[10] Glimm, J., The interactions of nonlinear hyperbolic waves. Comm. Pure Appl. Math. 41, 569–590 (1988). · Zbl 0635.35067
[11] Godunov, S. K., An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139, 521–523 (1961). English translation: Soviet Math. 2, 947–949 (1961).
[12] Hattori, H., The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion. Isothermal case. Arch. Rational Mech. Analysis 92, 247–263 (1986). · Zbl 0673.76084
[13] Hattori, H., The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion. Nonisothermal case. J. Diff. Eqs. 65, 158–174 (1986). · Zbl 0659.76076
[14] Hattori, H., The entropy rate admissibility criterion and the double phase boundary problem. Contemporary Math. 60, 51–65 (1987). · Zbl 0624.35054
[15] Hsiao, L., The entropy rate admissibility criterion in gas dynamics. J. Diff. Eqs. 38, 226–238 (1980). · Zbl 0439.76059
[16] Isaacson, E., Marchesin, D., Plohr, B., & B. Temple, The classification of solutions of quadratic Riemann problems. SIAM J. Appl. Math. 48, 1009–1032 (1988). · Zbl 0688.35056
[17] James, R. D., The propagation of phase boundaries in elastic bars. Arch. Rational Mech. Anal. 73, 125–158 (1980). · Zbl 0443.73010
[18] Jouguet, E., Sur la propagation des discontinuités dans les fluides. C. R. Acad. Sci. Paris 132, 673–676 (1901). · JFM 32.0762.01
[19] Keyfitz, B. L., & H. C. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory. Arch. Rational Mech. Anal. 72, 219–241 (1980). · Zbl 0434.73019
[20] Lax, P. D., Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10, 537–566 (1957). · Zbl 0081.08803
[21] Lax, P.D., Shock waves and entropy. Contributions to Nonlinear Functional Analysis (E. H. Zarantonello ed.), pp. 603–634. New York: Academic Press, 1971.
[22] Liu, T.-P., The Riemann problem for general systems of conservation laws. J. Diff. Eqs. 18, 218–234 (1975). · Zbl 0297.76057
[23] Liu, T.-P., Admissible solutions of hyperbolic conservation laws. Memoirs Am. Math. Soc. 240, 1–78 (1981).
[24] Majda, A., & R. Pego, Stable viscosity matrices for systems of conservation laws. J. Diff. Eqs. 56, 229–262 (1985). · Zbl 0543.76100
[25] Oleinik, O. A., Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation. Uspehi Mat. Nauk (N.S.), 14, 165–170 (1959). English translation: Am. Math. Soc. Transl. 33, 285–290.
[26] Rankine, W. J. M., On the thermodynamic theory of waves of finite longitudinal disturbance. Phil. Trans. Roy. Soc. Lond. 160, 277–288 (1870). · JFM 02.0832.01
[27] Riemann, B., Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Gött. Abh. Math. Cl. 8, 43–65 (1860).
[28] Schaeffer, D. G., & M. Shearer, The classification of 2{\(\times\)}2 systems of non-strictly hyperbolic conservation laws with application to oil recovery. Comm. Pure Appl. Math. 40, 141–178 (1987). · Zbl 0673.35073
[29] Shearer, M., Nonuniqueness of admissible solutions of Riemann initial value problems for a system of conservation laws of mixed type. Arch. Rational Mech. Anal. 93, 45–59 (1986). · Zbl 0613.35048
[30] Slemrod, M., Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 81, 301–315 (1983). · Zbl 0505.76082
[31] Slemrod, M., A limiting ”viscosity” approach to the Riemann problem for materials exhibiting change of phase. Arch. Rational Mech. Anal. 105, No. 4 (1989). · Zbl 0701.35101
[32] Stokes, G. G., On a difficulty in the theory of sound. Philosophical Magazine 33, 349–356 (1848).
[33] Stokes, G. G., On a difficulty in the theory of sound. Mathematical and Physical Papers, Vol. II, pp. 51–55. Cambridge University Press, 1883.
[34] Strutt, J. W. (Lord Rayleigh), The Theory of Sound, Vol. II, London: Macmillan 1878. · Zbl 0061.45904
[35] Strutt, J. W. (Lord Rayleigh), Note on tidal bores. Proc. Roy. Soc. London A 81, 448–449 (1908). · JFM 39.0799.01
[36] Strutt, J. W. (Lord Rayleigh), Aerial plane waves of finite amplitude. Proc. Roy. Soc. London A 84, 247–284 (1911).
[37] Truesdell, C., & R. Toupin, The Classical Field Theories. Handbuch der Physik (S. Flügge, Ed.), Vol. III/1, pp. 226–793. Berlin-Göttingen-Heidelberg: Springer-Verlag, 1960.
[38] Tupciev, V. A., On the method for introducing viscosity in the study of problems involving the decay of a discontinuity. Dokl. Akad. Nauk SSSR, 211, 55–58 (1973). English translation: Soviet Math. 14, 978–982 (1973). · Zbl 0294.35065
[39] Volpert, A. I., The space BV and quasilinear equations. Mat. Sbornik, 73 (115), 255–302 (1967). English translation: Math. USSR Sbornik 2, 225–267 (1967).
[40] Weber, H., Die Partiellen Differential-Gleichungen der Mathematischen Physik, Zweiter Band. Vierte Auflage. Braunschweig: Friedrich Vieweg und Sohn, 1901. · JFM 32.0782.01
[41] Wendroff, B., The Riemann problem for materials with nonconvex equation of state. Part I: Isentropic flow. Part II: General flow. J. Math. Anal. Appl. 38, 454–466; 640–658 (1972). · Zbl 0264.76054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.