×

zbMATH — the first resource for mathematics

Some numerical aspects of mixed finite elements for bending plates. (English) Zbl 0707.73074
Summary: Finite element schemes have been extensively studied during the ten last years. One of the reasons is the requirement of accuracy on stresses for composite materials. In this paper a numerical comparison between the solution of a mixed formulation and the famous QUAD 4 is carried out. We focus our attention on the stresses.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74P99 Optimization problems in solid mechanics
74K20 Plates
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Destuynder, Ph., Une théorie asymptotique des plaques minces en élasticité linéaire, () · Zbl 0627.73064
[2] Hughes, T.J.R.; Taylor, R.L.; Kanoknukulchoi, W., A simple and efficient element for plate bending, Internat. J. numer. methods engrg., 11, 10, 1529-1543, (1977) · Zbl 0363.73067
[3] MacNeal, R.H., A simple quadrilateral shell element, Comput. & structures, 8, 175-183, (1978) · Zbl 0369.73085
[4] Girault, V.; Raviart, P.A., Finite element methods for Navier-Stokes equations, () · Zbl 0396.65070
[5] Hughes, T.J.R.; Tezduyar, T.E., Finite elements based upon Mindlin plate theory with particular reference to the four-mode bilinear isoparametric element, ASME J. appl. mech., 46, 587-596, (1981) · Zbl 0459.73069
[6] Belytschko, T.; Stolarski, M., Shear and membrane locking in curved \(C\^{}\{0\}\) elements, Comput. methods appl. mech. engrg., 41, 279-296, (1983) · Zbl 0509.73072
[7] Destuynder, Ph.; Nevers, Th., Une modification du modèle de Mindlin pour LES plaques minces en flexion présentant un bord libre, (), 217-242, (2) · Zbl 0646.73026
[8] Destuynder, Ph.; Nevers, Th., A new finite element scheme for bending plate, Comput. methods appl. mech. engrg., 68, 127-139, (1988) · Zbl 0626.73070
[9] Hughes, T.J.R.; Franca, L.P., A mixed finite element formulation for Reissner-Mindlin plate theory: uniform convergence of all higher-order spaces, Comput. methods appl. mech. engrg., 67, 233-240, (1988) · Zbl 0611.73077
[10] Belytschko, T.; Lasry, D., Transverse shear oscillations in four nodes quadrilateral plate elements, Comput. & structures, 27, 3, 393-398, (1987) · Zbl 0624.73089
[11] Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from Lagrange mutipliers, Rairo, R2, 29-151, (1974) · Zbl 0338.90047
[12] Bercovier, M., Pertubation of mixed variational problems. application to mixed finite element methods, RAIRO, anal. numer., 12, 211-236, (1978) · Zbl 0428.65059
[13] Bathe, K.J.; Brezzi, F., On the convergence of a four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation, () · Zbl 0589.73068
[14] Brezzi, F.; Fortin, M., Numerical approximation of Mindlin-Reissner plates, Math. comput., 47, 175, 151-158, (1986) · Zbl 0596.73058
[15] Bathe, K.J.; Dvorkin, E., A formulation of general shell elements. the use of mixed interpolation of tensorial components, Internat. J. numer. methods engrg., 22, 697-722, (1986) · Zbl 0585.73123
[16] Nevers, Th.; Salaun, M., Vectorisation et parallélisation sur alliant FX8 d’un solveur pour LES schémas mixtes en théorie des plaques minces, Rapport interne du laboratoire de mécanique ecole centrale Paris, (1988)
[17] Batoz, J.L., 20 ans avec l’élément finis DKT, ()
[18] Akian, J.L.; Destuynder, Ph.; Nevers, Th.; Ousset, Y., Quelques méthodes d’éléments finis mixtes pour LES plaques minces, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.