Cheng, T. C. E.; Sin, C. C. S. A state-of-the-art review of parallel-machine scheduling research. (English) Zbl 0707.90053 Eur. J. Oper. Res. 47, No. 3, 271-292 (1990). Summary: The major research results in deterministic parallel-machine scheduling theory will pass a survey. The review reveals that there exist a lot of potential areas worthy of further research. Cited in 102 Documents MSC: 90B35 Deterministic scheduling theory in operations research 90-02 Research exposition (monographs, survey articles) pertaining to operations research and mathematical programming Keywords:sequencing; classification; deterministic parallel-machine scheduling; survey PDFBibTeX XMLCite \textit{T. C. E. Cheng} and \textit{C. C. S. Sin}, Eur. J. Oper. Res. 47, No. 3, 271--292 (1990; Zbl 0707.90053) Full Text: DOI References: [1] Achugbue, J. O.; Chin, F. Y., Bounds on schedules for independent tasks with similar execution time, Journal of ACM, 28, 81-99 (1981) · Zbl 0453.68005 [2] Baker, K. R., Introduction to Sequencing and Scheduling (1974), Wiley: Wiley New York [3] Baker, K. R.; Merten, A. G., Scheduling with parallel processors and linear delay costs, Naval Research Logistics Quartery, 20, 793-804 (1973) · Zbl 0273.90030 [4] Barnes, J. W.; Brennan, J. J., An improved algorithm for scheduling jobs on identical machines, AIIE Transactions, 9, 25-31 (1977) [5] Bellman, R.; Esogbue, A. O.; Nabeshima, I., Mathematical Aspects of Scheduling and Applications (1982), Pergamon: Pergamon Oxford · Zbl 0498.90018 [6] Blazewicz, J.; Finke, G.; Haupt, R.; Schmidt, G., New trends in machine scheduling, European Journal of Operational Research, 37, 303-317 (1988) · Zbl 0652.90058 [7] Brucker, P.; Garey, M. R.; Johnson, D. S., Scheduling equal-length tasks under treelike precedence constraints to minimize maximum lateness, Mathematics of Operations Research, 2, 275-284 (1977) · Zbl 0397.90044 [8] Bruno, L. J.; Coffman, E. G.; Sethi, R., Scheduling independent tasks to reduce mean finishing time, ACM Communications, 17, 382-387 (1974) · Zbl 0283.68039 [9] Bruno, L. J.; Downey, P. J., Probabilistic bounds for dual bin packing, Acta Informatica, 22, 333-345 (1985) · Zbl 0569.68037 [10] Chen, N. F.; Liu, C. L., On a class of scheduling algorithm for multi-processor computing systems, (Goos, G.; Hartmanis, J., Parallel Processing, Lecture Notes in Computer Science 24 (1975), Springer: Springer Berlin), 1-16 · Zbl 0317.68056 [11] Cheng, T. C.E., A heuristic for common due-date assignment and job scheduling on parallel machines, Journal of the Operational Research Society, 40, 1129-1135 (1989) · Zbl 0699.90060 [12] (Coffman, E. G., Computer and Job Shop Scheduling Theory (1976), Wiley: Wiley New York) · Zbl 0359.90031 [13] Coffman, E. G., An introduction to proof techniques for bin-packing approximation algorithm, (Dempster, M. A.H.; Lenstra, J. K.; Rinnooy Kan, A. H.G., Deterministic and Stochastic Scheduling (1982), D. Reidel Publishing Company: D. Reidel Publishing Company Dordrecht), 245-270 · Zbl 0494.68041 [14] Coffman, E. G.; Frederickson, G. N.; Lueker, G. S., Probabilistic analysis of the LPT processor scheduling heuristic, (Dempster, M. A.H.; Lenstra, J. K.; Rinnooy Kan, A. H.G., Deterministic and Stochastic Scheduling (1982), D. Reidel Publishing Company: D. Reidel Publishing Company Dordrecht), 319-331 · Zbl 0488.68034 [15] Coffman, E. G.; Frederickson, G. N.; Lueker, G. S., A note on expected makespans for largest-first sequences of independent tasks on two processors, Mathematics of Operations Research, 9, 260-266 (1984) · Zbl 0538.90036 [16] Coffman, E. G.; Garey, M. R.; Johnson, D. S., An application of bin-packing to multiprocessor scheduling, SIAM Journal of Computing, 7, 1-17 (1978) · Zbl 0374.68032 [17] Coffman, E. G.; Garey, M. R.; Johnson, D. S., Approximate algorithm for bin packing - An updated survey, (Ausiello, G.; Lucertini, M.; Serafini, P., Algorithm Design for Computer System Design (1984), Springer-Verlag: Springer-Verlag Wien), 49-106 · Zbl 0558.68062 [18] Coffman, E. G.; Gilbert, E. N., On the expected relative performance of list scheduling, Operations Research, 33, 548-561 (1985) · Zbl 0569.90044 [19] Coffman, E. G.; Graham, R. L., Optimal scheduling for two-processor systems, Acta Informatica, 1, 200-213 (1972) · Zbl 0248.68023 [20] Coffman, E. G.; Leung, J. Y.T., Combinatorial analysis of an efficient algorithm processor and storage allocation, SIAM Journal of Computing, 8, 202-217 (1979) · Zbl 0417.68022 [21] Coffman, E. G.; Sethi, R., A generalized bound on LPT sequencing, RAIRO-Informatique, 10, 17-25 (1976) · Zbl 0333.68040 [22] Conway, R. W.; Maxwell, W. L.; Miller, L. W., Theory of Scheduling (1967), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 1058.90500 [23] Cook, S. A., The complexity of theorem-provining procedures, (Proceedings of 3rd Annual ACM Symposium on Theory of Computing (1971)), 151-158 · Zbl 0253.68020 [24] Davida, G. I.; Linton, D. J., A new algorithm for the scheduling of tree structured tasks, (Proceedings of 1976 Conference on Information Sciences and Systems (1976), Johns Hopkins University), 543-548 [25] De, P.; Morton, T. E., Scheduling to minimum makespan on unequal parallel processors, Decision Science, 11, 586-602 (1980) [26] Dempster, M. A.H.; Lenstra, J. K.; Rinnooy Kan, A. H.G., (Deterministic and Stochastic Scheduling (1982), D. Reidel Publishing Company: D. Reidel Publishing Company Dordrecht) [27] Deuermeyer, B. L.; Friesen, D. K.; Langston, M. A., Maximizing the minimum processor finish in a multiprocessor system, SIAM Journal of Algorithms and Discrete Mathematics, 3, 190-196 (1982) · Zbl 0489.68031 [28] Dileepan, P.; Sen, T., Bicriterion static scheduling research for single machine, OMEGA, 16, 53-59 (1988) [29] Dobson, G., Scheduling independent tasks on uniform processors, SIAM Journal of Computing, 13, 705-716 (1984) · Zbl 0548.68025 [30] Dogramaci, A.; Surkis, J., Evaluation of a heuristic for scheduling independent jobs on parallel identical processors, Management Science, 23, 1208-1216 (1979) · Zbl 0465.90046 [31] Dror, M.; Stern, H. I.; Lenstra, J. K., Parallel machine scheduling: Processing rates dependent on number of jobs in operation, Management Science, 33, 1001-1009 (1987) · Zbl 0636.90044 [32] Eastman, W. L.; Even, S.; Isaacs, I. M., Bounds for the optimal scheduling of \(n\) jobs on \(m\) processors, Management Science, 11, 268-279 (1964) [33] Elmaghraby, S.; Park, S. H., Scheduling jobs on a number of identical machines, AIIE Transactions, 6, 1-13 (1974) [34] Finn, G.; Horowitz, E., A linear time approximation algorithm for multiprocessor scheduling, BIT, 19, 312-320 (1979) · Zbl 0413.68038 [35] French, S., Sequencing and Scheduling: An Introduction to the Mathematics of the Job Shop (1982), Ellis Horwood: Ellis Horwood Chichester · Zbl 0479.90037 [36] Frenk, J. B.G.; Rinnooy Kan, A. H.G., The rate of convergence to optimality of the LPT rule, Discrete Applied Mathematics, 14, 187-197 (1986) · Zbl 0611.90058 [37] Frenk, J. B.G.; Rinnooy Kan, A. H.G., The asymptotic optimality of the LPT rule, Mathematics of Operations Research, 12, 241-254 (1987) · Zbl 0632.90031 [38] Friesen, D. K., Tighter bounds for the MULTIFIT scheduling algorithm, SIAM Journal of Computing, 13, 170-181 (1984) · Zbl 0539.68024 [39] Friesen, D. K.; Langston, M. A., Bounds for MULTIFIT scheduling on uniform processors, SIAM Journal of Computing, 12, 60-70 (1983) · Zbl 0514.68048 [40] Friesen, D. K.; Langston, M. A., Analysis of a compound bin-packing, SIAM Journal of Computing, 18, 82-90 (1989) [41] Fujii, M.; Kasami, T.; Ninomiya, K., Optimal sequencing of two equivalent processors, SIAM Journal of Applied Mathematics, 17, 784-789 (1969) · Zbl 0205.48603 [42] Fujii, M.; Kasami, T.; Ninomiya, K., Optimal sequencing of two equivalent processors - Erratum, SIAM Journal of Applied Mathematics, 20, 141 (1971) · Zbl 0222.90045 [43] Gabow, H. N., An almost-linear algorithm for two-processor scheduling, Journal of ACM, 29, 766-780 (1982) · Zbl 0485.68034 [44] Garey, M. R.; Johnson, D. S., Scheduling tasks with nonuniform deadlines on two processors, Journal of ACM, 23, 461-467 (1976) · Zbl 0338.68048 [45] Garey, M. R.; Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness (1979), Freeman: Freeman San Francisco, CA · Zbl 0411.68039 [46] Garey, M. R.; Johnson, D. S.; Tarjan, R. E.; Yannakais, M., Scheduling opposing forests, SIAM Journal of Algorithms and Discrete Mathematics, 4, 72-93 (1983) · Zbl 0507.68021 [47] Gonzalez, M. J., Deterministic processor scheduling, ACM Survey, 9, 173-204 (1977) · Zbl 0357.68069 [48] Gonzalez, T.; Johnson, D. B., A new algorithm for preemptive scheduling of trees, Journal of ACM, 27, 287-312 (1980) · Zbl 0446.68026 [49] Goyal, D. K., Non-preemptive scheduling of unequal executive time tasks on two identical processors, (Technical Report CS-77-039 (1977), Computer Science Department, Washington State University: Computer Science Department, Washington State University Pullman, Washington, DC) [50] Graham, R. L., Bounds on certain multiprocessing anomalies, Bell System Technical Journal, 45, 1563-1581 (1966) · Zbl 0168.40703 [51] Graham, R. L., Bounds on multiprocessing timing anomalies, SIAM Journal of Applied Mathematics, 17, 416-429 (1969) · Zbl 0188.23101 [52] Graham, R. L., Bound on the performance of scheduling algorithms, (Coffman, E. G., Computer and Job Shop Scheduling Theory (1976), Wiley: Wiley New York), 165-224 · Zbl 0359.90031 [53] Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; Rinnooy Kan, A. H.G., Optimization and approximation in deterministic sequencing and scheduling: A Survey, Annals of Discrete Mathematics, 5, 287-326 (1979) · Zbl 0411.90044 [54] Gupta, S. K.; Kyparisis, J., Single machine scheduling research, OMEGA, 15, 207-227 (1987) [55] Hochbaum, D. S.; Shmoys, D. B., Using dual approximation algorithms for scheduling problems: theoretical and practical results, Journal of ACM, 34, 144-162 (1987) [56] Horn, W. A., Minimizing average flow time with parallel machines, Operations Research, 21, 846-847 (1973) · Zbl 0259.90030 [57] Horn, W. A., Some simple scheduling algorithms, Naval Research Logistics Quarterly, 21, 177-185 (1974) · Zbl 0276.90024 [58] Horvath, E. C.; Lam, S.; Sethi, R., Algorithm for preemptive scheduling, Journal of ACM, 24, 32-43 (1977) · Zbl 0354.90044 [59] Hu, T. C., Parallel sequencing and assembly line problems, Operations Research, 9, 841-848 (1961) [60] Ibarra, O. H.; Kim, C. E., On two-processor scheduling of one- or two-unit time tasks with precedence constraints, Journal of Cybernetics, 5, 87-109 (1976) · Zbl 0332.68043 [61] Johnson, D. S., Fast allocation algorithms, (Proceedings of 13th Annual IEEE Symposium on Switching and Automata Theory (1972)), 144-154 [62] Johnson, D. S., Near optimal bin-packing algorithm, (Ph.D. Dissertation (1973), Electrical Engineering Department, Massachusetts Institute of Technology) [63] Kao, T. Y.; Elsayed, E. A., Performance of the LPT algorithm in multiprocessor scheduling, (IE working paper (1988), Rutgers University: Rutgers University NJ), 88-109 [64] Karmarkar, N.; Karp, R. M., The differencing method of set partitioning (1982), Computer Sciences Div., University of California: Computer Sciences Div., University of California Berkeley, CA [65] Kariv, O., An \(O(n2.5)\) algorithm for finding a maximum matching in a general graph, (Ph.D. Dissertation (1976), Weizmann Institute of Science: Weizmann Institute of Science Rehovot) [66] Karp, R. M., Reducibility among combinatorial problems, (Miller, R. E.; Thatcher, J. W., Complexity of Computer Computations (1972), Plenum Press: Plenum Press New York), 85-103 · Zbl 0366.68041 [67] Karp, R. M., On the computational complexity of combinatorial problems, Networks, 5, 45-68 (1975) · Zbl 0324.05003 [68] Karp, R. M., The fast approximate solution of hard combinatorial problems, (Proceedings of 6th South Eastern Conference on Combinations, Graph, Theory and Computing (1975), Utilitas Mathematica Publishing Co: Utilitas Mathematica Publishing Co Winnipeg), 15-34 · Zbl 0369.05049 [69] Kaufman, M. T., An almost-optimal algorithm for the assembly line scheduling problem, IEEE Transactions on Computing, c-23, 1169-1174 (1974) · Zbl 0288.68026 [70] Kim, Y., On the superiority of a backward approach in list scheduling algorithms for multi-machine makespan problem, International Journal of Production Research, 25, 1751-1759 (1987) [71] Krause, K. L.; Shen, Y. Y.; Schwetman, H. D., Analysis of several task-scheduling algorithms for a model of multi-programming computer systems, Journal of ACM, 22, 522-550 (1975) · Zbl 0329.68056 [72] Kunde, M., Nonpreemptive LP-scheduling on homogeneous multiprocessor system, SIAM Journal of Computing, 10, 151-173 (1981) · Zbl 0454.68015 [73] Lam, S.; Sethi, R., Worst case analysis of two scheduling algorithms, SIAM Journal of Computing, 6, 518-536 (1977) · Zbl 0374.90031 [74] Langston, M. A., Improved LPT scheduling for identical processor systems, RAIRO Technique et Science Informatique, 1, 69-75 (1982) · Zbl 0483.68036 [75] Lawler, E. L., On scheduling problems with deferral costs, Management Science, 11, 280-288 (1964) [76] Lawler, E. L.; Labetoulle, J., On preemptive scheduling on unrelated and parallel processors by linear programming, Journal of ACM, 25, 612-619 (1978) · Zbl 0388.68027 [77] Lawler, E. L.; Lenstra, J. K.; Rinnooy Kan, A. H.G., Recent developments in deterministic sequencing and scheduling: A survey, (Dempster, M. A.H.; Lenstra, J. K.; Rinnooy Kan, A. H.G., Deterministic and Stochastic Scheduling (1982), D. Reidel Publishing Company: D. Reidel Publishing Company Dordrecht), 35-74 · Zbl 0482.68035 [78] Lawler, E. L.; Moore, J. M., A functional equation and its application to resource allocation and sequencing problem, Management Science, 16, 77-84 (1969) · Zbl 0184.23303 [79] Lenstra, J. K., Sequencing by Enumeration Methods (1977), Mathematisch Centrum: Mathematisch Centrum Amsterdam · Zbl 0407.90025 [80] Lenstra, J. K.; Rinnooy Kan, A. H.G., Computational complexity of discrete optimization, (Lenstra, J. K.; Rinnooy Kan, A. H.G.; Van Emde Boas, P., Interfaces Between Computer Science and Operations Research, Proceedings of a Symposium held at the Mathematisch Centrum. Interfaces Between Computer Science and Operations Research, Proceedings of a Symposium held at the Mathematisch Centrum, Amsterdam (1979), Mathematisch Centrum), 64-85 · Zbl 0387.90079 [81] Lenstra, J. K.; Rinnooy Kan, A. H.G., An introduction to multiprocessor scheduling, Consiglio Nazionale della Ricerche, 5 (1984), Roma · Zbl 0528.90047 [82] Lenstra, J. K.; Rinnooy Kan, A. H.G., Scheduling theory since 1981: An annotated bibliography, (O’Eigertaigh, M.; Lenstra, J. K.; Rinnooy Kan, A. H.G., Combinatorial Optimization: Annotated Bibliographies (1984), Wiley: Wiley Chichester) · Zbl 0528.90047 [83] Lenstra, J. K.; Rinnooy Kan, A. H.G.; Brucker, P., Complexity of machine scheduling problems, Annals of Discrete Mathematics, 1, 343-362 (1977) · Zbl 0301.90025 [84] Leung, J. Y., On scheduling independent tasks with restricted execution times, Operations Research, 30, 163-171 (1982) · Zbl 0481.90046 [85] Loulou, R., Tight bounds and probabilistic analysis of two heuristics for parallel processor scheduling, Mathematics of Operations Research, 9, 142-150 (1984) · Zbl 0541.90059 [86] McHugh, J. A.M., Hu’s precedence tree scheduling algorithm: A simple proof, Naval Research Logistics Quarterly, 31, 409-411 (1984) · Zbl 0546.90046 [87] McNaughton, R., Scheduling with deadlines and loss functions, Management Science, 6, 1-12 (1959) · Zbl 1047.90504 [88] Merten, A. G., Some quantitative techniques for file organization, (Technical Report No. 15 (1970), University of Wisconsin Computer Centre) [89] Monma, C. L., Linear-time algorithms for scheduling on parallel processors, Operations Research, 30, 116-124 (1982) · Zbl 0481.90048 [90] Muramatsu, R.; Ishii, K.; Takahashi, Some ways to increase flexibility in manufacturing systems, International Journal of Production Research, 23, 691-703 (1985) [91] Muntz, R. R.; Coffman, E. G., optimal preemptive scheduling on two processor systems, IEEE Transactions on Computing, 18, 1017-1020 (1969) · Zbl 0184.20504 [92] Panwalkar, S. S.; Iskander, W., A survey of scheduling rules, Operations Research, 25, 45-61 (1977) · Zbl 0369.90054 [93] Papadimitriou, C. H.; Steiglitz, K., Combinatorial Optimization: Algorithm and Complexity (1982), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0503.90060 [94] Rajaraman, M. K., An algorithm for scheduling parallel processors, International Journal of Production Research, 13, 479-486 (1975) [95] Rajaraman, M. K., A parallel sequencing algorithm for minimizing total cost, Naval Research Logistics Quarterly, 24, 473-481 (1977) · Zbl 0371.90067 [96] Rinnooy Kan, A. H.G., Machine Scheduling Problems: Classification, Complexity and Computations (1976), Martinus Nijhoff: Martinus Nijhoff The Hague · Zbl 0366.90092 [97] Root, J. G., Scheduling with deadlines and loss functions on \(k\) parallel machines, Management Science, 11, 460-475 (1965) · Zbl 0128.39502 [98] Rothkopf, M. H., Scheduling independent tasks on parallel processors, Management Science, 12, 437-447 (1966) [99] Sahni, S., Algorithms for scheduling independent tasks, Journal of ACM, 23, 116-127 (1976) · Zbl 0326.68024 [100] Sahni, S., General techniques for combinatorial approximation, Operations Research, 25, 920-927 (1977) [101] Sahni, S., Preemptive scheduling with due dates, Operations Research, 27, 925-934 (1979) · Zbl 0424.90031 [102] Sarin, S. C.; Ahn, S.; Bishop, A. B., An improved branching scheme for the branch and bound procedure of scheduling \(n\) jobs on \(m\) parallel machines to minimize total weighted flowtime, International Journal of Production Research, 26, 1183-1191 (1988) · Zbl 0641.90043 [103] Sen, T.; Raiszaden, F. M.E.; Dileepan, P., A branch-an-bound approach to the bicriterion scheduling problem involving total flowtime and range of lateness, Management Science, 34, 254-260 (1988) · Zbl 0638.90056 [104] Sethi, R., Algorithm for minimum-length schedule, (Coffman, E. G., Computer and Job Shop Scheduling Theory (1976), Wiley: Wiley New York), 51-100 [105] Sethi, R., Scheduling graphs on two processors, SIAM Journal of Computing, 5, 73-82 (1967) [106] Sethi, R., On the complexity of mean flow time scheduling, Mathematics of Operations Research, 2, 320-330 (1977) · Zbl 0402.90046 [107] Sin, C. C.S., Some topics of parallel-machine scheduling theory (1989), Department of Actuarial and Management Sciences, University of Manitoba, Unpublished M.Sc. Thesis · Zbl 0704.90043 [108] Stinson, D. R., An Introduction to the Design and Analysis of Algorithms (1987), Charles Babbage Research Centre: Charles Babbage Research Centre Winnipeg · Zbl 0641.05009 [109] Tarjan, R. E., Efficiency of a good but not linear set union algorithm, Journal of ACM, 22, 215-225 (1975) · Zbl 0307.68029 [110] Ullman, J. D., NP-complete scheduling problems, Journal of Computing System Science, 10, 384-393 (1975) · Zbl 0313.68054 [111] Ullman, J. D., Complexity of sequencing problems, (Coffman, E. G., Computer and Job Shop Scheduling Theory (1976), Wiley: Wiley New York), 139-164 [112] Van Wassenhove, L. N.; Baker, K. R., A bicriterion approach to time/cost trade-offs in sequencing, European Journal of Operational Research, 11, 48-54 (1982) · Zbl 0482.90043 [113] Van Wassenhove, L. N.; Gelders, L. F., Solving a bicriterion scheduling problem, European Journal of Operational Research, 4, 42-48 (1980) · Zbl 0418.90054 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.