×

zbMATH — the first resource for mathematics

Limiting curvature mimetic gravity and its relation to loop quantum cosmology. (English) Zbl 1419.83029
Summary: Considering as usual that the underlying geometry of our universe is well described by the spatially flat Friedmann-Lemaître-Robertson-Walker line element, we review how the background of holonomy corrected loop quantum cosmology (LQC) could be obtained as a simple modified version of the mimetic gravity. We also analyze the scalar and tensor perturbations of this modified mimetic model, from which we find that at the level of tensor perturbations it is indistinguishable from General Relativity while at the level of scalar perturbations, the modified mimetic model, which has the same background as LQC, does not exhibit the same properties as LQC in the so-called deformed algebra approach.
MSC:
83C45 Quantization of the gravitational field
83F05 Cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
Software:
NP; NPspinor
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Penrose, R., Gravitational collapse and space-time singularities, Phys. Rev. Lett., 14, 57, (1965) · Zbl 0125.21206
[2] Hawking, SW, Occurrence of singularities in open universes, Phys. Rev. Lett., 15, 689, (1965)
[3] Hawking, SW, Singularities in the universe, Phys. Rev. Lett., 17, 444, (1966)
[4] Hawking, SW; Penrose, R., The singularities of gravitational collapse and cosmology, Proc. R. Soc. Lond. A, 314, 529, (1970) · Zbl 0954.83012
[5] Guth, A., The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D, 23, 347, (1981) · Zbl 1371.83202
[6] Linde, AD, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett., 108 B, 389, (1982)
[7] Polchinski, J.: String Theory, vol. 1 and 2. Cambridge University Press, Cambridge (1998) · Zbl 1075.81054
[8] Rovelli, C., Loop quantum gravity, Living Rev. Rel., 1, 1, (1998) · Zbl 1023.83013
[9] Ashtekar, A.; Singh, P., Loop quantum cosmology: a status report, Class. Quant. Gravity, 28, 213001, (2011) · Zbl 1230.83003
[10] Cai, Y-F; Wilson-Ewing, E., Non-singular bounce scenarios in loop quantum cosmology and the effective field description, JCAP, 03, 026, (2014)
[11] Haro, J.; Amorós, J.; Aresté Saló, L., The matter-ekpyrotic bounce scenario in loop quantum cosmology, JCAP, 09, 002, (2017)
[12] Cailleteau, T.; Mielczarek, J.; Barrau, A.; Grain, J., Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology, Class. Quant. Gravity, 29, 095010, (2012) · Zbl 1242.83113
[13] Ade, PAR; etal., A joint analysis of BICEP2/Keck array and Planck data, Phys. Rev. Lett., 114, 101301, (2015)
[14] Date, G.; Hossain, GM, Genericness of inflation in isotropic loop quantum cosmology, Phys. Rev. Lett., 94, 011301, (2005)
[15] Date, G.; Hossain, GM, Genericness of big bounce in isotropic loop quantum cosmology, Phys. Rev. Lett., 94, 011302, (2005)
[16] Helling, R.C.: Higher curvature counter terms cause the bounce in loop cosmology. arXiv:0912.3011
[17] Date, G.; Sengupta, S., Effective actions from loop quantum cosmology: correspondence with higher curvature gravity, Class. Quant. Gravity, 26, 105002, (2009) · Zbl 1166.83018
[18] Haro, J., Future singularity avoidance in phantom dark energy models, JCAP, 07, 007, (2012)
[19] Langlois, D.; Liu, H.; Noui, K.; Wilson-Ewing, E., Effective loop quantum cosmology as a higher-derivative scalar-tensor theory, Class. Quant. Gravity, 34, 225004, (2017) · Zbl 1380.83313
[20] Weitzenböck, R.: Invarianten Theorie. Noordhoff, Groningen (1923) · JFM 49.0070.04
[21] Arnowitt, R.L., Deser, S., Misner, C.W.: The Dynamics of General Relativity, Gravitation: an introduction to current research, Louis Witten ed., chapter 7, p. 227. Wiley (1962). arXiv:gr-qc/0405109 · Zbl 1152.83320
[22] Haro, J.; Amorós, J., Bouncing cosmologies via modified gravity in the ADM formalism: application to loop quantum cosmology, Phys. Rev. D, 97, 064014, (2018)
[23] Haro, J., Cosmological perturbations in teleparallel loop quantum cosmology, JCAP, 11, 068, (2013)
[24] Li, B.; Sotiriou, TP; Barrow, JD, f(T) Gravity and local Lorentz invariance, Phys. Rev. D, 83, 064035, (2011)
[25] Krššák, M.; Saridakis, EN, The covariant formulation of f(T) gravity, Class. Quant. Gravity, 33, 115009, (2016) · Zbl 1342.83279
[26] Hohmann, M., Järv, L., Ualikhanova, U.: Covariant formulation of scalar-torsion gravity. arXiv:1801.05786
[27] Haro, J.; Pan, S., A note on bouncing backgrounds, Phys. Rev. D, 97, 103518, (2018)
[28] Carminati, J.; McLenaghan, RG, Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space, J. Math. Phys., 32, 3135, (1991) · Zbl 0736.76081
[29] Chamseddine, AH; Mukhanov, V.; Vikman, A., Cosmology with mimetic matter, JCAP, 06, 017, (2014)
[30] Chamseddine, AH; Mukhanov, V., Resolving cosmological singularities, JCAP, 03, 009, (2017)
[31] Bodendorfer, N.; Schäfer, A.; Schliemann, J., On the canonical structure of general relativity with a limiting curvature and its relation to loop quantum gravity, Phys. Rev. D, 97, 084057, (2018)
[32] Bojowald, M.; Brahma, S.; Buyukcam, U.; D’Ambrosio, F., Hypersurface-deformation algebroids and effective space-time models, Phys. Rev. D, 94, 104032, (2016)
[33] Bojowald, M., Brahma, S., Yeom, D.: Effective line elements and black-hole models in canonical (loop) quantum gravity (2018). arXiv:1803.01119
[34] Hirano, S., Nishi, S., Kobayashi, T.: Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations. arXiv:1704.06031
[35] Chamseddine, AH; Mukhanov, V., Mimetic dark matter, JHEP, 1311, 135, (2013)
[36] Golovnev, A., On the recently proposed mimetic dark matter, Phys. Lett. B, 728, 39, (2014) · Zbl 1377.83154
[37] Nojiri, S.; Odintsov, SD, Mimetic \(F(R)\) gravity: inflation, dark energy and bounce, Mod. Phys. Lett. A, 29, 1450211, (2014) · Zbl 1305.83061
[38] Leon, G.; Saridakis, EN, Dynamical behavior in mimetic F(R) gravity, JCAP, 04, 031, (2015)
[39] Odintsov, SD; Oikonomou, VK, Accelerating cosmologies and the phase structure of F(R) gravity with Lagrange multiplier constraints: a mimetic approach, Phys. Rev. D, 93, 023517, (2016)
[40] Rinaldi, M.; Sebastiani, L.; Casalino, A.; Vagnozzi, S., Mimicking dark matter and dark energy in a mimetic model compatible with GW170817, Phys. Dark Univ., 22, 108-115, (2018)
[41] Brahma, S.; Golovnev, A.; Yeom, Dh, On singularity-resolution in mimetic gravity, Phys. Lett. B, 782, 280-284, (2018) · Zbl 1404.83080
[42] Sebastiani, L.; Vagnozzi, S.; Myrzakulov, R., Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics, Adv. High Energy Phys., 2017, 3156915, (2017)
[43] Nojiri, S.; Odintsov, SD; Oikonomou, VK, Ghost-free F(R) gravity with Lagrange multiplier constraint, Phys. Lett. B, 775, 44, (2017) · Zbl 1380.83218
[44] Mukhanov, VF; Feldman, HA; Brandenberger, RH, Theory of cosmological perturbations, Physics Reports, 215, 203, (1992)
[45] Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005) · Zbl 1095.83002
[46] Firouzjahi, H.; Gorji, MA; Mansoori, SAH, Instabilities in mimetic matter perturbations, JCAP, 07, 032, (2018)
[47] Haro, J.; Amorós, J., Viability of the matter bounce scenario in \(F(T)\) gravity and loop quantum cosmology for general potentials, JCAP, 1412, 031, (2014)
[48] Cai, Y-F; Chen, S-H; Dent, JD; Dutta, S.; Saridakis, EN, Matter bounce cosmology with the \(f(T)\) gravity, Class. Quant. Gravity, 28, 215011, (2011) · Zbl 1230.83074
[49] Cailleteau, T.; Barrau, A.; Vidotto, F.; Grain, J., Consistency of holonomy-corrected scalar, vector and tensor perturbations in loop quantum cosmology, Phys. Rev. D, 86, 087301, (2012)
[50] Bodendorfer, N.; Mele, FM; Münch, J., Is limiting curvature mimetic gravity an effective polymer quantum gravity?, Class. Quant. Gravity, 35, 225001, (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.