zbMATH — the first resource for mathematics

Comparison between compressible, dilatable and incompressible fluid hypotheses efficiency in liquid conditions at high pressure and large temperature differences. (English) Zbl 07073357
Summary: This work is devoted to comparing the compressible, dilatable and incompressible modeling approach for reproducing the unsteady TOPFLOW test case PTS TSW 3-4. For this comparison, we use two codes: NEPTUNE_CFD and TRIO. In one hand, NEPTUNE_CFD allows adopting the compressible hypothesis with a URANS turbulence approach. On the other hand, TRIO can reproduce the other two assumptions with a LES turbulence approach. At first, the computations have been validated by comparing the numerical results with the experimental data concerning temperature evolution in time. The comparison shows that the incompressible hypothesis presents a more critical error than the other ones. Then, the velocity profiles obtained by the two codes are shown and compared with a twofold objective: first of all, showing a comparison between two turbulence modeling approaches and then to observe the turbulence structure and fluid dynamic developments. The velocity comparison shows an excellent agreement between the two codes.
76-XX Fluid mechanics
Full Text: DOI
[1] Prasser, H.-M; Grunwald, G.; Höhne, T.; Kliem, S.; Rohde, U.; Weiss, F.-P., Coolant mixing in a PWR - deboration transients, steam line breaks and emergency core cooling injection - experiments and analyses, Nucl. Technol., 143, 1, 37-56, (2003)
[2] Höhne, T.; Kliem, S.; Bieder, U., Numerical modelling of a buoyancy-driven flow experiment at the ROCOM test facility using the CFD codes CFX and Trio_U », Nucl. Eng. Des., 236, 12, 1309-1325, (2006)
[3] Martinez, P.; Galpin, J., CFD modeling of the EPR primary circuit, Nucl. Eng. Des., 278, 529-541, (2014)
[4] Prasser, H. M.; Beyer, M.; Carl, H.; Manera, A.; Pietruske, H.; Schutz, H.; Weiss, F. P., The multipurpose thermal hydraulic test facility TOPFLOW: An overview on experimental capabilities, instrumentation and results, Kerntechnik, 71, 163-173, (2006)
[5] Apanasevich, P.; Coste, P.; Niceno, B.; Heib, C.; Lucas, D., Comparison of CFD simulations on two-phase pressurized thermal shock scenarios, Nucl. Eng. Des., 266, 112-128, (2014)
[6] Apanasevich, P.; Lucas, D.; Beyer, M.; Szalinski, L., CFD based approach for modelling direct contact condensation heat transfer in two-phase turbulent stratified flow, Int. J. Therm. Sci., 95, 123-135, (2015)
[7] Coste, P.; Merigoux, N., Two-phase CFD validation: TOPFLOW-PTS steady-state steam-water tests 3-16, 3-17, 3-18 and 3-19, Nucl. Eng. Des., 299, 18-27, (2016)
[8] P. Coste, M. Lecomte, Neptune_CFD calculations of a TOPFLOW-PTS steady state steam-water test, in: Proc. NURETH-15, Pisa, 2013, pp. 12-15.
[9] Mérigoux, N., CFD codes benchmark on TOPFLOW-PTS experiment, Nucl. Eng. Des., (2016)
[10] Theofanous, T. G.; Iyer, K., Mixing phenomena of interest to SBLOCAs, Nucl. Eng. Des., 102, 91-103, (1987)
[11] Nourbakhsh, H. P.; Lin, C. H., Modelling of Thermal Stratification and Mixing Phenomena of Importance To PTS Analysis, (2001), NUREG/CR-6568
[12] Mimouni, S.; Guingo, M.; Lavieville, J.; Mérigoux, N., Combined evaluation of bubble dynamics, polydispersion model and turbulence modeling for adiabatic two-phase flow, Nucl. Eng. Des., 321, 57-68, (2017)
[13] P.E. Angeli, U. Bieder, G. Fauchet, Overview of the Trio_U code: Main features, V & V procedures and typical applications to engineering, in: NURETH-16, Chicago, IL, USA, 2015.
[14] http://www-trio-u.cea.fr.
[15] Mérigoux, N.; Laviéville, J.; Mimouni, S.; Guingo, M.; Baudry, C.; Bellet, S., Verification, validation and application of NEPTUNE_CFD to two-phase pressurized thermal shocks, Nucl. Eng. Des., 312, 74-85, (2017)
[16] J.P. Manes, V.H.S. Espinoza, et al. Validation of Neptune-CFD two phase flow models using experimental data, Sci. Technol. Nucl. Installations 2014 1-19.
[17] www.code-saturne.org.
[18] Elmo, M.; O. Cioni, Low Mach number model for compressible flows and application to HTR, Nucl. Eng. Des., 222, 117-124, (2003)
[19] Nicoud, F.; Ducros, F., Subgrid-scale modelling based on the square of the velocity gradient tensor, Flow Turbul. Combust., 62, 183-200, (1999) · Zbl 0980.76036
[20] P.-E. Angeli, M.-A. Puscas, G. Fauchet, A. Cartalade, FVCA8 Benchmark for the Stokes and Navier-Stokes Equations with the TrioCFD Code—Benchmark Session, in: Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects, 2017, pp. 181-202. · Zbl 1391.76381
[21] Kuzmin, D.; Turek, S., High-resolution FEM-TVD schemes based on a fully multidimensional flux limit, J. Comput. Phys., 198, 131-158, (2004) · Zbl 1107.76352
[22] Hirt, C. V.; Nichols, B. D.; Romero, N. C., SOLA - a numerical solution algorithm for transient flow, (1975), Los Alamos National Lab, Report LA-5852
[23] http://www.salome-platform.org/.
[24] Hinze, J. O., Turbulence, (1959), McGraw-Hill
[25] https://www.cines.fr/calcul/materiels/occigen/.
[26] Lakehal, D.; Fulgosi, M.; Yadigaroglu, G., Direct numerical simulation of a condensing stratified flow, ASME J. Heat Transfer, 130, 2, Article 021501 pp., (2008)
[27] Coste, P., A large interface model for two-phase flow, Nucl. Eng. Des., 255, 38-50, (2013)
[28] Jayatilleke, C. L.V., The influence of Prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer, Prog. Heat Mass Transfer, 1, 193, (1969)
[29] Speziale, C. G.; Sarkar, S.; Gatski, T. B., Modelling the pressure strain correlation of turbulence: An invariant dynamic system approach, J. Fluid Mech., 227, 245-272, (1991) · Zbl 0728.76052
[30] Coste, P.; Lavieville, J., A turbulence model for large interfaces in high Reynolds two-phase CFD, Nucl. Eng. Des., 284, 162-175, (2015)
[31] Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg. 79 (2009) 1309-1331. · Zbl 1176.74181
[32] https://www.irsn.fr/EN/Research/Scientific-tools/Computer-codes/Pages/The-CATHARE2-code-4661.aspx.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.