×

zbMATH — the first resource for mathematics

High-order finite-volume method with block-based AMR for magnetohydrodynamics flows. (English) Zbl 1444.76071
Summary: A high-order central essentially non-oscillatory (CENO) finite volume scheme combined with a block-based adaptive mesh refinement (AMR) algorithm is proposed for the solution of the ideal magnetohydrodynamics equations. The high-order CENO finite-volume scheme is implemented with fourth-order spatial accuracy within a flexible multi-block, body-fitted, hexahedral grid framework. An important feature of the high-order adaptive approach is that it allows for anisotropic refinement, which can lead to large computational savings when anisotropic flow features such as isolated propagating fronts and/or waves, shocks, shear surfaces, and current sheets are present in the flow. This approach is designed to handle complex multi-block grid configurations, including cubed-sphere grids, where some grid blocks may have degenerate edges or corners characterized by missing neighboring blocks. A procedure for building valid high-order reconstruction stencils, even at these degenerate block edges and corners, is proposed, taking into account anisotropic resolution changes in a systematic and general way. Furthermore, a non-uniform or heterogeneous block structure is used where the ghost cells of a block containing the solution content of neighboring blocks are stored directly at the resolution of the neighbors. A generalized Lagrange multiplier divergence correction technique is applied to achieve numerically divergence-free magnetic fields while preserving high-order accuracy on the anisotropic AMR grids. Parallel implementation and local grid adaptivity are achieved by using a hierarchical block-based domain partitioning strategy in which the connectivity and refinement history of grid blocks are tracked using a flexible binary tree data structure. Physics-based refinement criteria as well as the CENO smoothness indicator are both used for directing the mesh refinement. Numerical results, including solution-driven anisotropic refinement of cubed-sphere grids, are presented to demonstrate the accuracy and efficiency of the approach.
MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, M., Colella, P., Graves, D.T., Johnson, J.N., Keen, N.D., Ligocki, T.J., Martin, D.F., McCorquodale, P.W., Modiano, D., Schwartz, P.O., Sternberg T. D. Van Straalen, B.: Chombo: Software package for AMR applications—design document. Lawrence Berkeley National Technical Report LBNL-6616E
[2] Balsara, D., Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys., 228, 5040-5056, (2009) · Zbl 1280.76030
[3] Barth, T.: Recent developments in high order k-exact reconstruction on unstructured meshes. In: 31st Aerospace Sciences Meeting (1993)
[4] Bell, J.; Berger, M.; Saltzman, J.; Welcome, M., Three-dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM J. Sci. Comput., 15, 127-138, (1994) · Zbl 0793.65072
[5] Berger, M., On conservation at grid interfaces, SIAM J. Numer. Anal., 24, 967-984, (1987) · Zbl 0633.65086
[6] Berger, M.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484-512, (1984) · Zbl 0536.65071
[7] Brackbill, J.; Barnes, D., The effect of nonzero \(\nabla \cdot \mathbf{B}\) on the numerical solution of the magnetohydrodynamics equations, J. Comput. Phys., 35, 426-430, (1980) · Zbl 0429.76079
[8] Burstedde, C.; Wilcox, LC; Ghattas, O., p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 1103-1133, (2011) · Zbl 1230.65106
[9] Charest, M.R.J.: Effect of variables choices on Godunov-type high-order finite-volume methods (to be submitted)
[10] Charest, MRJ; Groth, CPT, A high-order central ENO finite-volume scheme for three-dimensional low-speed viscous flows on unstructured mesh, Commun. Comput. Phys., 17, 615-656, (2015) · Zbl 1373.76122
[11] Charest, M.R.J., Groth, C.P.T.: A high-order central ENO finite-volume scheme for three-dimensional turbulent flows on unstructured mesh. AIAA Paper (June 2013)
[12] Charest, MRJ; Groth, CPT; Gülder, ÖL, A computational framework for predicting laminar reactive flows with soot formation, Combust. Theory Model., 14, 793-825, (2010) · Zbl 1230.80008
[13] Chen, Y.; Toth, G.; Gombosi, T., A fifth-order finite difference scheme for hyperbolic equations on block-adaptive curvilinear grids, J. Comput. Phys., 305, 604-621, (2016) · Zbl 1349.65278
[14] Christlieb, AJ; Rossmanith, JA; Tang, Q., Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics, J. Comput. Phys., 268, 302-325, (2014) · Zbl 1349.76442
[15] Clauer, CR; Gombosi, TI; Zeeuw, DL; Ridley, AJ; Powell, KG; Leer, B.; Stout, QF; Groth, CPT, High performance computer methods applied to predictive space weather simulations, IEEE Trans. Plasma Sci., 28, 1931-1937, (2000)
[16] Clawpack Development Team: Clawpack software (2017). https://doi.org/10.5281/zenodo.262111. http://www.clawpack.org. Version 5.4.0
[17] Colella, P.; Dorr, M.; Hittinger, JA; Martin, D., High-order finite-volume methods in mapped coordinates, J. Comput. Phys., 230, 2952-2976, (2011) · Zbl 1218.65119
[18] Davis, BN; LeVeque, RJ, Adjoint methods for guiding adaptive mesh refinement in tsunami modeling, Pure Appl. Geophys., 173, 4055-4074, (2016)
[19] De Sterck, H.: Multi-dimensional upwind constrained transport on unstructured grid for shallow water magnetohydrodynamics. AIAA (2001)
[20] Sterck, H.; Poedts, S., Intermediate shocks in three-dimensional magnetohydrodynamic bow-shock flows with multiple interacting shock fronts, Phys. Rev. Lett., 84, 5524-5527, (2000)
[21] Zeeuw, D.; Gombosi, T.; Groth, CPT; Powell, K.; Stout, Q., An adaptive MHD method for global space weather simulations, IEEE Trans. Plasma Sci., 105, 1956-1965, (2000)
[22] Dedner, A.; Kemm, F.; Kroner, D.; Munz, C.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673, (2002) · Zbl 1059.76040
[23] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 294-318, (1988) · Zbl 0642.76088
[24] Evans, CR; Hawley, JF, Simulation of magnetohydrodynamics flows: a constrained transport method, Astrophys. J., 332, 659-677, (1988)
[25] Freret, L., Groth, C.P.T.: Anisotropic non-uniform block-based adaptive mesh refinement for three-dimensional inviscid and viscous flows. In: 22nd AIAA Computational Fluid Dynamics Conference (2015)
[26] Freret, L., Groth, C.P.T.: A parallel high-order CENO finite-volume scheme with AMR for three-dimensional ideal MHD flows. In: International Conference On Spectral and High-Order Methods (2016) · Zbl 1388.76174
[27] Freret, L., Groth, C.P.T.: A high-order finite-volume method with anisotropic AMR for ideal MHD flows. In: 55th AIAA Aerospace Science Meeting (2017) · Zbl 1388.76174
[28] Gao, X.; Groth, CPT, A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows, Int. J. Comput. Fluid Dyn., 20, 349-357, (2006) · Zbl 1370.76127
[29] Gao, X.; Groth, CPT, A parallel solution adaptive method for three-dimensional turbulent non-premixed combusting flows, J. Comput. Phys., 229, 3250-3275, (2010) · Zbl 1307.76055
[30] Gao, X.; Northrup, SA; Groth, CPT, Parallel solution-adaptive method for two-dimensional non-premixed combusting flows, Int. J. Prog.. Comput. Fluid Dyn., 11, 76-95, (2011) · Zbl 1278.76067
[31] Groth, C.P.T., De Zeeuw, D., Powell, K., Gombosi, T., Stout, Q.: A parallel adaptive 3D MHD scheme for modeling coronal and solar wind plasma flows, pp. 193-198 (1999)
[32] Groth, CPT; Zeeuw, DL; Gombosi, TI; Powell, KG, Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere, J. Geophys. Res., 105, 25053-25078, (2000)
[33] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high-order accurate essentially non-oscillatory scheme III, J. Comput. Phys., 131, 3-47, (1997) · Zbl 0866.65058
[34] Helzel, C.; Rossmanith, JA; Taetz, B., A high-order unstaggered constrained transport method for the three-dimensional ideal magnetohydrodynamics equations based on the method of lines, J. Sci. Comput., 35, 623-651, (2013) · Zbl 1369.76062
[35] Helzel, C.; Rossmanith, JA; Taetz, B., An unstaggered constrained transport method for the 3d ideal magnetohydrodynamic equations, J. Comput. Phys., 230, 3803-3829, (2011) · Zbl 1369.76061
[36] Ivan, L.; Sterck, H.; Northrup, SA; Groth, CPT, Multi-dimensional finite-volume scheme for hyperbolic conservation laws on three-dimensional solution-adaptive cubed-sphere grids, J. Comput. Phys., 255, 205-227, (2013) · Zbl 1349.76340
[37] Ivan, L.; Sterck, H.; Susanto, A.; Groth, CPT, High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids, J. Comput. Phys., 282, 157-182, (2015) · Zbl 1352.65281
[38] Ivan, L.; Groth, CPT, High-order solution-adaptive central essentially non-oscillatory CENO method for viscous flows, J. Comput. Phys., 257, 830-862, (2013) · Zbl 1349.76341
[39] Jiang, B.; Lin, T.; Povinelli, L., Large-scale computation of incompressible viscous flow by least-squares finite element method, Comput. Methods Appl. Mech. Eng., 144, 213-231, (1994)
[40] Jiang, G.; Shu, C., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065
[41] Keppens, R.; Maliani, Z.; Marle, AJ; Delmont, P.; Vlasis, A.; Holst, B., Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics, J. Comput. Phys., 231, 718-744, (2012) · Zbl 1426.76385
[42] LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1992) · Zbl 0847.65053
[43] Liu, XD; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212, (1994) · Zbl 0811.65076
[44] MacNeice, P.; Olson, K.; Mobarry, C.; Fainchtein, R.; Packer, C., Paramesh: a parallel adaptive mesh refinement community toolkit, Comput. Phys. Commun., 126, 330-354, (2000) · Zbl 0953.65088
[45] McCorquodale, P.; Colella, P., A high-order finite volume method for conservation laws on locally refined grids, Commun. Appl. Math. Comput. Sci., 6, 1-25, (2011) · Zbl 1252.65163
[46] McCorquodale, P.; Dorr, M.; Hittinger, J.; Colella, P., High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids, J. Comput. Phys., 288, 181-195, (2015) · Zbl 1354.65178
[47] McDonald, JG; Sachdev, JS; Groth, CPT, Application of gaussian moment closure to micron-scale flows with moving embedded boundaries, AIAA J., 52, 1839-1857, (2014)
[48] Mignone, A.; Tzeferacos, P.; Bodo, G., High-order conservative finite difference GLM-MHD schemes for cell-centered MHD, J. Comput. Phys., 229, 5896-5920, (2010) · Zbl 1425.76305
[49] Mocz, P.; Pakmor, R.; Springel, V.; Vogelsberger, M.; Marinacci, F.; Hernquist, L., A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics, Mon. Not. R. Astron. Soc., 463, 477-488, (2016)
[50] Mocz, P.; Vogelsberger, M.; Hernquist, L., A constrained transport scheme for MHD on unstructured static and moving meshes, Mon. Not. R. Astron. Soc., 442, 43-55, (2014)
[51] Narechania, N., Freret, L., Groth, C.P.T.: Block-based anisotropic AMR with A Posteriori adjoint-based error estimation for three-dimensional inviscid and viscous flows. In: 23rd AIAA Computational Fluid Dynamics (2017)
[52] Olsson, F.; Petersson, N., Stability of interpolation on overlapping grids, Comput. Fluids, 25, 583-605, (1996) · Zbl 0882.65081
[53] Pärt-Enander, E.; Sjörgreen, B., Conservative and non-conservative interpolation between overlapping grids for finite volume solutions of hyperbolic problems, Comput. Fluids, 23, 551-574, (1994) · Zbl 0813.76071
[54] Powell, KG; Roe, PL; Linde, TJ; Gombosi, TI; Zeeuw, DL, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284-309, (1999) · Zbl 0952.76045
[55] Sachdev, JS; Groth, CPT; Gottlieb, JJ, A parallel solution-adaptive scheme for multi-phase core flows in solid propellant rocket motors, Int. J. Comput. Fluid Dyn., 19, 159-177, (2005) · Zbl 1286.76100
[56] Shen, C.; Qiu, J.; Christlieb, A., Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations, J. Comput. Phys., 230, 3780-3802, (2011) · Zbl 1218.65085
[57] Shu, CW, High-order weighted non-oscillatory schemes for convection dominated problems, SIAM Rev., 51, 82-126, (2009) · Zbl 1160.65330
[58] Susanto, A.; Ivan, L.; Sterck, H.; Groth, CPT, High-order central ENO finite-volume scheme for ideal MHD, J. Comput. Phys., 250, 141-164, (2013) · Zbl 1349.65583
[59] Tobaldini Neto, L., Groth, C.P.T.: A high-order finite-volume scheme for large-eddy simulation of turbulent premixed flames. AIAA Paper (January 2014)
[60] Toth, G.; Holst, B.; Sokolov, I.; Zeeuw, D.; Gombosi, T.; Fand, F.; Manchester, W.; Meng, X.; Najib, D.; Powell, K.; Stout, Q.; Glocer, A.; Ma, Y.; Opher, M., Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870-903, (2012)
[61] Van Leer, B., Tai, C.H., Powell, K.G.: Design of optimally-smoothing multi-stage schemes for the euler equations. Tech. Rep. 89-1933-CP, AIAA (1989) · Zbl 0758.76043
[62] Venditti, D.; Darmofal, D., Anisotropic grid adaptation for functionnal outputs: application to two-dimensional viscous flows, J. Comput. Phys., 187, 22-46, (2003) · Zbl 1047.76541
[63] Venditti, D., Darmofal, D.: Anisotropic adaptation for functionnal outputs of viscous flow simulations. AIAA Paper (June 2003) · Zbl 1047.76541
[64] Venkatakrishnan, V.: On the accuracy of limiters and convergence to steady state solutions. In: 31st Aerospace Sciences (1993)
[65] Wang, ZJ; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, F.; Hillewaert, K.; Huynh, HT; Kroll, N.; May, G.; Persson, P.; Leer, BV; Visbal, M., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 1-42, (2012)
[66] Williamschen, M.J., Groth, C.P.T.: Parallel anisotropic block-based adaptive mesh refinement algorithm for three-dimensional flow. In: 21st AIAA Computational Fluid Dynamics Conference (2013)
[67] Zanotti, O.; Dumbser, M., Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables, Comput. Astrophys. Cosmol., 3, 1, (2016)
[68] Zhang, Z.J., Groth, C.P.T.: Parallel high-order anisotropic block-based adaptive mesh refinement finite-volume scheme. Paper 2011-3695, AIAA (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.