zbMATH — the first resource for mathematics

The Coxeter transformation on cominuscule posets. (English) Zbl 07075207
Summary: Let \(J(C)\) be the poset of order ideals of a cominuscule poset \(C\) where \(C\) comes from two of the three infinite families of cominuscule posets or the exceptional cases. We show that the Auslander-Reiten translation \(\tau\) on the Grothendieck group of the bounded derived category for the incidence algebra of the poset \(J(C)\), which is called the Coxeter transformation in this context, has finite order. Specifically, we show that \(\tau^{h+1}=\pm id\) where \(h\) is the Coxeter number for the relevant root system.

16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
05E10 Combinatorial aspects of representation theory
16G20 Representations of quivers and partially ordered sets
16G60 Representation type (finite, tame, wild, etc.) of associative algebras
18G10 Resolutions; derived functors (category-theoretic aspects)
06A07 Combinatorics of partially ordered sets
Full Text: DOI arXiv
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1, Volume 65 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (2006) · Zbl 1092.16001
[2] Billey, S., Lakshmibai, V.: Singular loci of Schubert varieties, volume 182 of Progress in Mathematics. Birkhäuser Boston, Inc, Boston (2000) · Zbl 0959.14032
[3] Chapoton, F., On the Coxeter transformations for Tamari posets, Canad. Math. Bull., 50, 182-190, (2007) · Zbl 1147.18007
[4] Diveris, K., Purin, M., Webb, P.: The bounded derived category of a poset. arXiv:1709.03227 (2017) · Zbl 1380.18001
[5] Green, R.M.: Combinatorics of Minuscule Representations, Volume 199 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2013)
[6] Happel, D., On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 62, 339-389, (1987) · Zbl 0626.16008
[7] Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, Volume 119 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1988) · Zbl 0635.16017
[8] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[9] Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, volume 9 of Graduate Texts in Mathematics. Springer, Berlin (1978). Second printing, revised
[10] Keller, B., On triangulated orbit categories, Doc. Math., 10, 551-581, (2005) · Zbl 1086.18006
[11] Keller, B.: Calabi-Yau Triangulated Categories. In: Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep, pp. 467-489. Eur. Math. Soc., Zürich (2008)
[12] Kussin, D.; Lenzing, H.; Meltzer, H., Triangle singularities, ADE-chains, and weighted projective lines, Adv. Math., 237, 194-251, (2013) · Zbl 1273.14075
[13] Ladkani, S.: Universal derived equivalences of posets. arXiv:0705.0946 (2007) · Zbl 1127.18005
[14] Ladkani, S., On the periodicity of Coxeter transformations and the non-negativity of their Euler forms, Linear Algebra Appl., 428, 742-753, (2008) · Zbl 1149.15023
[15] Rush, DB; Shi, X., On orbits of order ideals of minuscule posets, J. Algebraic Combin., 37, 545-569, (2013) · Zbl 1283.06007
[16] Stanley, R.P.: Enumerative Combinatorics. Volume 1, Volume 49 of Cambridge Studies in Advanced Mathematics, second edition. Cambridge University Press, Cambridge (2012)
[17] Stein, W.A., et al.: SageMath, the Sage Mathematics Software System (Version 7.5.1). http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/posets/posets.html (Unknown Month 2005)
[18] Thomas, H.; Yong, A., A combinatorial rule for (co)minuscule Schubert calculus, Adv. Math., 222, 596-620, (2009) · Zbl 1208.14052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.