zbMATH — the first resource for mathematics

Domain decomposition algorithms for the two dimensional nonlinear Schrödinger equation and simulation of Bose-Einstein condensates. (English) Zbl 1416.65328
Summary: We apply the optimized Schwarz method to the two dimensional nonlinear Schrödinger equation and extend this method to the simulation of Bose-Einstein condensates (Gross-Pitaevskii equation). We propose an extended version of the Schwartz method by introducing a preconditioned algorithm. The two algorithms are studied numerically. The experiments show that the preconditioned algorithm improves the convergence rate and reduces the computation time. In addition, the classical Robin condition and a newly constructed absorbing condition are used as transmission conditions.

65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
65Y05 Parallel numerical computation
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
Full Text: DOI
[1] X. Antoine, W. Bao & C. Besse, “Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations”, Comput. Phys. Commun.184 (2013) no. 12, p. 2621-2633 · Zbl 1344.35130
[2] X. Antoine, C. Besse & P. Klein, “Absorbing Boundary Conditions for the Two-Dimensional Schrödinger Equation With an Exterior Potential Part I: Construction and a Priori Estimates”, Math. Model. Methods Appl. Sci.22 (2012) no. 10 · Zbl 1251.35096
[3] X. Antoine, C. Besse & P. Klein, “Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part II: Discretization and numerical results”, Numer. Math.125 (2013) no. 2, p. 191-223 · Zbl 1251.35096
[4] X. Antoine & R. Duboscq, “Computer Physics cations GPELab , a Matlab Toolbox to solve Gross-Pitaevskii Equations I : computation of stationary solutions”, Comput. Phys. Commun.185 (2014) no. 11, p. 2969-2991 · Zbl 1348.35003
[5] X. Antoine, E. Lorin & A. D. Bandrauk, “Domain Decomposition Method and High-Order Absorbing Boundary Conditions for the Numerical Simulation of the Time Dependent Schrödinger Equation with Ionization and Recombination by Intense Electric Field”, J. Sci. Comput. (2014), p. 1-27
[6] S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith & H. Zhang, PETSc Users Manual, Technical report ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013
[7] W. Bao & Y. Cai, “Mathematical theory and numerical methods for Bose-Einstein condensation”, Kinet. Relat. Model.6 (2012) no. 1, p. 1-135 · Zbl 1266.82009
[8] W. Bao, I.-L. Chern & F. Y. Lim, “Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates”, J. Comput. Phys.219 (2006) no. 2, p. 836-854 · Zbl 1330.82031
[9] W. Bao & Q. Du, “Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow”, SIAM J. Sci. Comput.25 (2004) no. 5, p. 1674-1697 · Zbl 1061.82025
[10] W. Bao, D. Marahrens, Q. Tang & Y. Zhang, “A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose-Einstein Condensates via Rotating Lagrangian Coordinates”, SIAM J. Sci. Comput.35 (2013) no. 6 · Zbl 1286.35213
[11] W. Bao, P. A. Markowich & H. Wang, “Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates”, Commun. Math. Sci.3 (2005) no. 1, p. 57-88 · Zbl 1073.82004
[12] C. Besse & F. Xing, “Domain decomposition algorithms for two dimensional linear Schrödinger equation”, , 2015
[13] C. Besse & F. Xing, “Schwarz waveform relaxation method for one dimensional Schrödinger equation with general potential”, Numerical Algorithms, accepted (2016) · Zbl 1359.65187
[14] Y. Boubendir, X. Antoine & C. Geuzaine, “A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation”, J. Comput. Phys.231 (2012) no. 2, p. 262-280 · Zbl 1243.65144
[15] A. Durán & J.-M. Sanz-Serna, “The numerical integration of relative equilibrium solutions. The nonlinear Schrodinger equation”, IMA J. Numer. Anal.20 (2000) no. 2, p. 235-261 · Zbl 0954.65087
[16] M. J. Gander, “Optimized Schwarz Methods”, SIAM J. Numer. Anal.44 (2006) no. 2, p. 699-731 · Zbl 1117.65165
[17] M. J. Gander, “Schwarz methods over the course of time”, Electron. Trans. Numer. Anal.31 (2008), p. 228-255 · Zbl 1171.65020
[18] M. J. Gander & L. Halpern, “Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems”, SIAM J. Numer. Anal.45 (2007) no. 2, p. 666-697 · Zbl 1140.65063
[19] M. J. Gander & L. Halpern, Méthodes de décomposition de domaine, Encyclopédie électronique pour les ingénieurs, 2012
[20] M. J. Gander, F. Magoules & F. Nataf, “Optimized Schwarz methods without overlap for the Helmholtz equation”, SIAM J. Sci. Comput.24 (2002) no. 1, p. 38-60 · Zbl 1021.65061
[21] L. Halpern & J. Szeftel, “Optimized and quasi-optimal Schwarz waveform relaxation for the one dimensional Schrödinger equation”, Math. Model. Methods Appl. Sci.20 (2010) no. 12, p. 2167-2199 · Zbl 1213.35192
[22] P.-L. Lions, “On the Schwarz alternating method. III: a variant for nonoverlapping subdomains”, Third Int. Symp. domain Decompos. methods Partial Differ. equations6 (1990), p. 202-223 · Zbl 0704.65090
[23] S. Loisel, “Condition Number Estimates for the Nonoverlapping Optimized Schwarz Method and the 2-Lagrange Multiplier Method for General Domains and Cross Points”, SIAM J. Numer. Anal.51 (2013) no. 6, p. 3062-3083 · Zbl 1287.35003
[24] Message Passing Interface Forum, “MPI : A Message-Passing Interface Standard Version 3.0” 2012,
[25] F. Nataf & F. Rogier, “Factorization of the convection-diffusion operator and a (possibly) non overlapping Schwarz method”, Contemp. Math. (1994) · Zbl 0796.65105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.