zbMATH — the first resource for mathematics

High-order discretization of a gyrokinetic Vlasov model in edge plasma geometry. (English) Zbl 1416.65292
Summary: We describe a new spatial discretization of a continuum gyrokinetic Vlasov model in axisymmetric tokamak edge plasma geometries. The geometries are represented using a multiblock decomposition in which logically distinct blocks are smoothly mapped from rectangular computational domains and are aligned with magnetic flux surfaces to accommodate strong anisotropy induced by the magnetic field. We employ a fourth-order, finite-volume discretization in mapped coordinates to mitigate the computational expense associated with discretization on 4D phase space grids. Applied to a conservative formulation of the gyrokinetic system, a finite-volume approach expresses local conservation discretely in a natural manner involving the calculation of normal fluxes at cell faces. In the approach presented here, the normal fluxes are computed in terms of face-averaged velocity normals in such a way that (i) the divergence-free property of the gyrokinetic velocity is preserved discretely to machine precision, (ii) the configuration space normal velocities are independent of mapping metrics, and (iii) the configuration space normal velocities are computed from exact pointwise evaluation of magnetic field data except for one term. The algorithms described in this paper form the foundation of a continuum gyrokinetic edge code named COGENT, which is used here to perform a convergence study verifying the accuracy of the spatial discretization.
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
35Q83 Vlasov equations
65Z05 Applications to the sciences
Full Text: DOI
[4] Candy, J., Gyro
[5] Candy, J.; Waltz, R. E., Anomalous transport in the DIII-D tokamak matched by supercomputer simulation, Phys. Rev. Lett., 91, 4, (2003)
[6] Candy, J.; Waltz, R. E., An Eulerian gyrokinetic-Maxwell solver, J. Comput. Phys., 186, 545-581, (2003) · Zbl 1072.82554
[7] Chang, C. S.; Ku, S.; Diamond, P. H.; Lin, Z.; Parker, S.; Hahm, T. S.; Samatova, N., Compressed ion temperature gradient turbulence in diverted tokamak edge, Phys. Plasmas, 16, (2009)
[8] Colella, P.; Dorr, M. R.; Hittinger, J. A.F.; Martin, D. F., High-order, finite-volume methods in mapped coordinates, J. Comput. Phys., 230, 2952-2976, (2011) · Zbl 1218.65119
[9] Colella, P.; Graves, D. T.; Ligocki, T. J.; Martin, D. F.; Modiano, D.; Serafini, D. B.; Van Straalen, B., Chombo software package for AMR applications - design document
[10] Dorf, M.; Cohen, R.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P., Simulation of neoclassical transport with the continuum gyrokinetic code COGENT, Phys. Plasmas, 20, (2013)
[11] Dorf, M.; Dorr, M.; Hittinger, J.; Lee, W.; Ghosh, D., Conservative high-order finite-volume modeling of drift waves, J. Comput. Phys., 373, 446-454, (2018)
[12] Dorf, M. A.; Cohen, R. H.; Compton, J. C.; Dorr, M.; Rognlien, T. D.; Angus, J.; Krasheninnikov, S.; Colella, P.; Martin, D.; McCorquodale, P., Progress with the COGENT edge kinetic code: collision operator options, Contrib. Plasma Phys., 52, 5-6, 518-522, (2012)
[13] Dorf, M. A.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Rognlien, T. D., Progress with the COGENT edge kinetic code: implementing the Fokker-Planck collision operator, Contrib. Plasma Phys., 54, 4-6, 517-523, (2014)
[14] Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P., Numerical modelling of geodesic acoustic mode relaxation in a tokamak edge, Nucl. Fusion, 53, (2013)
[15] Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.; Cohen, R. H.; Rognlien, T. D., Continuum kinetic modeling of the tokamak plasma edge, Phys. Plasmas, 23, (2016)
[16] Dorland, W.; Jenko, F.; Kotschenreuther, M.; Rogers, B. N., Electron temperature gradient turbulence, Phys. Rev. Lett., 85, 5579, (2000)
[17] Dorr, M. R.; Cohen, R. H.; Colella, P.; Dorf, M. A.; Hittinger, J. A.F.; Martin, D. F., Numerical simulation of phase space advection in gyrokinetic models of fusion plasmas, (Proceedings of SciDAC 2010, Chattanooga, TN, (July 2010))
[18] Ghosh, D.; Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.F., Kinetic simulation of collisional magnetized plasmas with semi-implicit time integration, SIAM J. Sci. Comput., (2018), in press
[19] Ghosh, D.; Dorf, M. A.; Hittinger, J.; Dorr, M., Implicit-explicit time integration for the Vlasov-Fokker-Planck equations, (Proceedings of the 48th AIAA Plasmadynamics and Lasers Conference, (June 2017), American Institute of Aeronautics and Astronautics), 5-9
[20] Giraldo, F. X.; Kelly, J. F.; Constantinescu, E. M., Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA), SIAM J. Sci. Comput., 35, 5, B1162-B1194, (2013) · Zbl 1280.86008
[21] Grandgirard, V.; Sarazin, Y.; Angelino, P.; Bottino, A.; Crouseilles, N.; Darmet, G.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph.; Jolliet, S.; Latu, G.; Sonnendr├╝cker, E.; Villard, L., Global full-f gyrokinetic simulations of plasma turbulence, Plasma Phys. Control. Fusion, 49, B173-B182, (2007)
[22] Hahm, T. S., Nonlinear gyrokinetic equations for turbulence in core transport barriers, Phys. Plasmas, 3, 12, 4658-4664, (1996)
[23] Hazeltine, R. D.; Meiss, J. D., Plasma confinement, (1992), Addison-Wesley Publishing Company Redwood City, CA
[24] Heikkinen, J. A.; Janhunen, S. J.; Kiviniemi, T. P.; Ogando, F., Full-f gyrokinetic method for particle simulation of tokamak transport, J. Comput. Phys., 227, 5582-5609, (2008) · Zbl 1220.76079
[25] Hittinger, J. A.F.; Banks, J. W., Block-structured adaptive mesh refinement algorithms for Vlasov simulation, J. Comput. Phys., 241, 118-140, (2013) · Zbl 1349.76339
[26] Idomura, Y., Full-f gyrokinetic simulation over a confinement time, Phys. Plasmas, 21, (2007)
[27] Idomura, Y., A new hybrid kinetic electron model for full-f gyrokinetic simulations, J. Comput. Phys., 313, 511-531, (2016) · Zbl 1349.65304
[28] Janhunen, S. J.; Kiviniemi, T. P.; Heikkinen, J. A.; Korpillo, T.; Leerink, S.; Nora, M.; Ogando, F., Recent advances in gyrokinetic full-f particle simulation of medium sized tokamaks with ELMFIRE, Contrib. Plasma Phys., 50, 3-5, 252-255, (2010)
[29] Jenko, F., Massively parallel Vlasov simulation of electromagnetic drift-wave turbulence, Comput. Phys. Commun., 125, 196, (2000) · Zbl 0969.76099
[30] Jenko, F.; Dannert, T.; Angioni, C., Heat and particle transport in a tokamak: advances in nonlinear gyrokinetics, Plasma Phys. Control. Fusion, 47, B195, (2005)
[31] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228, (1996) · Zbl 0877.65065
[32] Kennedy, C. A.; Carpenter, M. H., Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 1-2, 139-181, (2003) · Zbl 1013.65103
[33] Kim, K.; Chang, C. S.; Seo, J.; Ku, S.; Choe, W., What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?, Phys. Plasmas, 24, (2017)
[34] Kiviniemi, T. P.; Heikkinen, J. A.; Janhunen, S.; Henriksson, S. V., Full f gyrokinetic simulation of ft-2 tokamak plasma, Plasma Phys. Control. Fusion, 48, A327-A333, (2006)
[35] Kopriva, D. A., Metric identities and the discontinuous spectral element method on curvilinear meshes, SIAM J. Sci. Comput., 26, 3, 301-327, (2006) · Zbl 1178.76269
[36] Kotschenreuther, M.; Rewoldt, G.; Tang, W. M., Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities, Comput. Phys. Commun., 88, 128, (1995) · Zbl 0923.76198
[37] Ku, S.; Chang, C. S.; Diamond, P. H., Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry, Nucl. Fusion, 49, (2009)
[38] McCorquodale, P.; Dorr, M. R.; Hittinger, J. A.F.; Colella, P., High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids, J. Comput. Phys., 288, (2015) · Zbl 1354.65178
[39] Porter, G. D.; Isler, R.; Boedo, J.; Rognlien, T. D., Detailed comparison of simulated and measured plasma profiles in the scrape-off layer and edge plasma of DIII-D, Phys. Plasmas, 7, 9, 3663-3680, (2000)
[40] Rognlien, T. D.; Rensink, M. E., Edge-plasma models and characteristics for magnetic fusion energy devices, Fusion Eng. Des., 60, 497, (2002)
[41] Rognlien, T. D.; Ryutov, D. D.; Mattor, N.; Porter, G. D., Two-dimensional electric fields and drifts near the magnetic separatrix in divertor tokamaks, Phys. Plasmas, 6, 1851, (1999)
[42] Rognlien, T. D.; Milovich, J. L.; Rensink, M. E.; Porter, G. D., A fully implicit, time dependent 2-d fluid code for modeling tokamak edge plasmas, J. Nucl. Mater., 196-198, C, 347-351, (1992)
[43] Spivak, Michael, Calculus on manifolds, (1965), W.A. Benjamin, Inc. New York, NY
[44] Umansky, M. V.; Day, M. S.; Rognlien, T. D., On numerical solution of strongly anisotropic diffusion equation on misaligned grids, Numer. Heat Transf., Part B, Fundam., 47, 533-554, (2005)
[45] Wiesen, S.; Reiter, D.; Kotov, V.; Baelmans, M.; Dekeyser, W.; Kukushkin, A. S.; Lisgo, S. W.; Pitts, R. A.; Rozhansky, V.; Saibene, G.; Veselova, I.; Voskoboynikov, S., The new SOLPS-ITER code package, J. Nucl. Mater., 463, 480-484, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.