FraC: a new conforming mesh method for discrete fracture networks. (English) Zbl 1416.65494

Summary: The fracture cut (FraC) approach to mesh three-dimensional (3D) discrete fracture networks (DFN) is presented. The considered DFNs consist of a network of planar two-dimensional (2D) fractures sharing intersections that can in turn intersect themselves, resulting in highly complex meshing issues. The key idea of FraC is to decompose each fracture into a set of connected closed contours, with the original intersection traces located at the boundaries of the contours. Thus, intersection segments can be more easily accounted for when building a conforming mesh. Three distinct strategies for intersection points management are also proposed to enhance the quality of resulting meshes. Steady-state single-phase flow simulations are performed to validate the conform meshes obtained using FraC. The results from flow simulations as well as from a mesh quality analysis on a benchmark case show that a flexible AoM strategy (adding or moving intersection points) appears to be the best choice to generate ready-to-run meshes for complex DFN. This approach also allows accounting for tiny features within the fracture networks while keeping a good mesh quality and respecting DFN connectivity. Finally, a scalability of the mesh generator is conducted to assess the performance of the approach.


65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI


[1] Acuna, J. A.; Yortsos, Y. C., Numerical construction and flow simulation in networks of fractures using fractal geometry, (SPE Annual Technical Conference and Exhibition, (January 1991), Society of Petroleum Engineers)
[2] Adler, P. M.; Thovert, J. F.; Mourzenko, V. V., Fractured Porous Media, (2012), Oxford University Press · Zbl 1266.74002
[3] Ahmed, R.; Edwards, M. G.; Lamine, S.; Huisman, B. A.; Pal, M., Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model, J. Comput. Phys., 303, 470-497, (2015) · Zbl 1349.74343
[4] Aquilina, L.; Rose, P.; Vaute, L.; Brach, M.; Gentier, S.; Jeannot, R.; Jacquot, E.; Audigane, P.; Tran-Viet, T.; Jung, R., A tracer test at the Soultz-Sous-Forets hot dry rock geothermal site, (Proceedings, Twenty-Third Workshop on Geothermal Reservoir Engineering, (1998), Stanford University: Stanford University Stanford, California), 343-350
[5] Beicip-FranLab, FracaFlow, (2017)
[6] Benedetto, M. F.; Berrone, S.; Pieraccini, S.; Scialò, S., The virtual element method for discrete fracture network simulations, Comput. Methods Appl. Mech. Eng., 280, 135-156, (2014) · Zbl 1423.74863
[7] Benedetto, M. F.; Berrone, S.; Scialò, S., A globally conforming method for solving flow in discrete fracture networks using the virtual element method, Finite Elem. Anal. Des., 109, 23-36, (2016)
[8] Berrone, S.; Pieraccini, S.; Scialò, S., A PDE-constrained optimization formulation for discrete fracture network flows, SIAM J. Sci. Comput., 35, 2, B487-B510, (2013) · Zbl 1266.65188
[9] Berrone, S.; Pieraccini, S.; Scialò, S., Non-stationary transport phenomena in networks of fractures: effective simulations and stochastic analysis, Comput. Methods Appl. Mech. Eng., 315, 1098-1112, (2017)
[10] Bodin, J.; Porel, G.; Delay, F.; Ubertosi, F.; Bernard, S.; De Dreuzy, J. R., Simulation and analysis of solute transport in 2d fracture/pipe networks: the solfrac program, J. Contam. Hydrol., 89, 1, 1-28, (2007)
[11] Bourbiaux, B., Fractured reservoir simulation: a challenging and rewarding issue, Oil Gas Sci. Technol.-Rev. Inst. Fr. Pét., 65, 2, 227-238, (2010)
[12] Bourbiaux, B.; Basquet, R.; Cacas, M. C.; Daniel, J. M.; Sarda, S., An integrated workflow to account for multi-scale fractures in reservoir simulation models: implementation and benefits, (Abu Dhabi International Petroleum Exhibition and Conference, (2002), Society of Petroleum Engineers)
[13] Borouchaki, H.; George, P. L., Delaunay Triangulation and Meshing. Application to Finite Elements, (1998), Herms: Herms Paris · Zbl 0908.65143
[14] Botsch, M.; Kobbelt, L. A., Robust procedure to eliminate degenerate faces from triangle meshes, (Vision, Modeling & Visualization, (2001)), 283-289
[15] Brenner, K.; Groza, M.; Guichard, C.; Masson, R., Vertex approximate gradient scheme for hybrid dimensional two-phase Darcy flows in fractured porous media, Modél. Math. Anal. Numér., 49, 2, 303-330, (2015) · Zbl 1311.76078
[16] Cacas, M. C.; Ledoux, E.; de Marsily, G.; Tillie, B.; Barbreau, A.; Durand, E.; Feuga, B.; Peaudecerf, P., Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model, Water Resour. Res., 26, 3, 479-489, (1990)
[17] Cast3M, Website for the computer code cast3m, (2017)
[18] De Dreuzy, J. R.; Pichot, G.; Poirriez, B.; Erhel, J., Synthetic benchmark for modeling flow in 3D fractured media, Comput. Geosci., 50, 59-71, (2013)
[19] De Dreuzy, J. R.; Rapaport, A.; Babey, T.; Harmand, J., Influence of porosity structures on mixing-induced reactivity at chemical equilibrium in mobile/immobile Multi-Rate Mass Transfer (MRMT) and Multiple INteracting Continua (MINC) models, Water Resour. Res., 49, 12, 8511-8530, (2013)
[20] Delaunay, B., Sur la sphère vide. A la mémoire de Georges Voronoï, Izv. Akad. Nauk SSSR, Otd. Mat. Estestv. Nauk, 6, 793-800, (1934) · JFM 60.0946.06
[21] Delorme, M.; Bossie-Codreanu, D.; Ben-Gharbia, I.; Khebzegga, O.; Khvoenkova, N.; Ricois, O., Unconventional production forecast needs integration of field hydraulic stimulation data through fracture model calibration and optimized numerical scheme, (SPE Argentina Exploration and Production of Unconventional Resources Symposium, (2016), Society of Petroleum Engineers), SPE-180946-MS
[22] Dershowitz, W.; Fidelibus, C., Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by the boundary element method, Water Resour. Res., 35, 9, 2685-2691, (1999)
[23] DuMux, Web site for the computer code DuMux, (2017)
[24] Erhel, J.; De Dreuzy, J. R.; Poirriez, B., Flow simulation in three-dimensional discrete fracture networks, SIAM J. Sci. Comput., 31, 4, 2688-2705, (2009) · Zbl 1387.65124
[25] Flemisch, B.; Darcis, M.; Erbertseder, K.; Faigle, B.; Lauser, A.; Mosthaf, K.; Müthing, S.; Nuske, P.; Tatomir, A.; Wolff, M., Dumux: DUNE for multi-{phase, component, scale, physics,...} flow and transport in porous media, Adv. Water Resour., 34, 9, 1102-1112, (2011)
[26] Fourno, A.; Benabderrahmane, H.; Grenier, C.; Delay, F., Development and qualification of a smeared fracture modelling approach for transfers in fractured media, (Groundwater in Fractured Rocks, IAH Selected Paper Series, vol. 9, (2007), Taylor & Francis), 587-603
[27] Fourno, A.; Grenier, C.; Benabderrahmane, A.; Delay, F., A continuum voxel approach to model flow in 3d fault networks: a new way to obtain up-scaled hydraulic conductivity tensors of grid cells, J. Hydrol., 493, 68-80, (2013)
[28] Fourno, A.; Noetinger, B.; Borderie, C., An original and useful approach to mesh a discrete fracture network using a Delaunay triangulation: application on flow and transport upscaling from characterization scale to reservoir scale, (Computational Methods in Water Resources Conference 2016, XXI International Conference, (2016)), 36
[29] Frey, P. J.; George, P. L., Mesh Generation: Application to Finite Elements, (2000), Hermes Science: Hermes Science Paris, 816 pp
[30] Grenier, C.; Fourno, A.; Mouche, E.; Delay, F.; Benabderrahmane, H., Assessment of retention processes for transport in a fractured system at Äspö (Sweden) granitic site: from short-time experiments to long-time predictive models, (Dynamics of Fluids and Transport in Fractured Rock, vol. 162, (2005)), 117-128
[31] Gylling, B.; Moreno, L.; Neretnieks, I., The channel network model—a tool for transport simulations in fractured media, Groundwater, 37, 3, 367-375, (1999)
[32] Hammond, G. E.; Lichtner, P. C.; Mills, R. T., Evaluating the performance of parallel subsurface simulators: an illustrative example with PFLOTRAN, Water Resour. Res., 50, 1, 208-228, (2014)
[33] Huang, N.; Jiang, Y.; Li, B.; Liu, R., A numerical method for simulating fluid flow through 3-d fracture networks, J. Nat. Gas Sci. Eng., 33, 1271-1281, (2016)
[34] Huber, R.; Helmig, R., Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media, Comput. Geosci., 4, 2, 141-164, (2000) · Zbl 0973.76059
[35] Hyman, J. D.; Gable, C. W.; Painter, S. L.; Makedonska, N., Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy, SIAM J. Sci. Comput., 36, 4, A1871-A1894, (2014) · Zbl 1305.74082
[36] Hyman, J. D.; Karra, S.; Makedonska, N.; Gable, C. W.; Painter, S. L.; Viswanathan, H. S., dfnWorks: a discrete fracture network framework for modeling subsurface flow and transport, Comput. Geosci., 84, 10-19, (2015)
[37] Jourdain, X.; Colliat, J. B.; De Sa, C.; Benboudjema, F.; Gatuingt, F., Upscaling permeability for fractured concrete: meso-macro numerical approach coupled to strong discontinuities, Int. J. Numer. Anal. Methods Geomech., 38, 5, 536-550, (2014)
[38] Karimi-Fard, M.; Gong, B.; Durlofsky, L. J., Generation of coarse-scale continuum flow models from detailed fracture characterizations, Water Resour. Res., 42, 10, (2006)
[39] Karra, S.; Makedonska, N.; Viswanathan, H. S.; Painter, S. L.; Hyman, J. D., Effect of advective flow in fractures and matrix diffusion on natural gas production, Water Resour. Res., 51, 10, 8646-8657, (2015)
[40] Khvoenkova, N.; Delorme, M., An optimal method to model transient flows in 3D discrete fracture network, (IAMG Conference, (2011)), 1238-1249
[41] Lichtner, P. C.; Hammond, G. E.; Lu, C.; Karra, S.; Bisht, G.; Andre, B.; Mills, R. T.; Kumar, J., PFLOTRAN User Manual, (2013), Technical Report
[42] Long, J.; Remer, J.; Wilson, C.; Witherspoon, P., Porous media equivalents for networks of discontinuous fractures, Water Resour. Res., 18, 3, 645-658, (1982)
[43] Los Alamos Grid Toolbox, (2013), Los Alamos National Laboratory
[44] Makedonska, N.; Painter, S. L.L.; Bui, Q. M.; Gable, C. W.; Karra, S., Particle tracking approach for transport in three-dimensional discrete fracture networks, Comput. Geosci., 19, 5, 1123-1137, (2015) · Zbl 1391.76735
[45] Matthai, S. K.; Nick, H. M., Upscaling two-phase flow in naturally fractured reservoirs, Am. Assoc. Pet. Geol. Bull., 93, 11, 1621-1632, (2009)
[46] Miller, G. L., A Delaunay based numerical method for three dimensions: generation, formulation, and partition, (Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing, (1995)) · Zbl 0978.68575
[47] Mustapha, H.; Dimitrakopoulos, R., Discretizing two-dimensional complex fractured fields for incompressible two-phase flow, Int. J. Numer. Methods Fluids, 65, 7, 764-780, (2011) · Zbl 1444.76119
[48] Murphy, M.; Mount, D. M.; Gable, C. W., A point-placement strategy for conforming Delaunay tetrahedralization, Int. J. Comput. Geom. Appl., 11, 6, 669-682, (2001) · Zbl 1074.68646
[49] S. Neuman, A proposed conceptual framework and methodology for investigating flow and transport in Swedish crystalline rocks. SKB Swedish Nuclear Fuel and Waste Management Co., Stockholm, September, Arbetsrapport, 88-37, 1988.
[50] Ngo, T. D.; Fourno, A.; Noetinger, B., Modeling of transport processes through large-scale discrete fracture networks using conforming meshes and open-source software, J. Hydrol., 254, 66-79, (2017)
[51] Noetinger, B., A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow, J. Comput. Phys., 283, 205-223, (2015) · Zbl 1351.76280
[52] Noetinger, B.; Jarrige, N., A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks, J. Comput. Phys., 231, 1, 23-38, (2012) · Zbl 1415.76460
[53] Oda, M., Permeability tensor for discontinuous rock masses, Geotechnique, 35, 483-495, (1985)
[54] Pichot, G.; Erhel, J.; De Dreuzy, J. R., A mixed hybrid mortar method for solving flow in discrete fracture networks, Appl. Anal., 89, 10, 1629-1643, (2010) · Zbl 1387.65122
[55] Pichot, G.; Erhel, J.; de Dreuzy, J. R., A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks, SIAM J. Sci. Comput., 34, 1, B86-B105, (2012) · Zbl 1387.65121
[56] Pruess, K.; Narasimhan, T. N., A practical method for modeling fluid and heat flow in fractured porous media, SPE J., 25, 1, 14-26, (1985)
[57] Pruess, K.; Wang, J. S.Y.; Tsang, Y. W., On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff. 2 - Effective continuum approximation, Water Resour. Res., 26, 6, 1249-1261, (1990)
[58] Ricois, O., Advantages of an unstructured unconventional fractured media model integrated within a multiphysics computational platform, (International Petroleum Technology Conference, (2016)), IPTC-18846-MS
[59] Sander, O.; Koch, T.; Schröder, N.; Flemisch, B., The dune FoamGrid implementation for surface and network grids, (2015), CoRR
[60] Shewchuk, Jonathan R., Delaunay Refinement Mesh Generation, (1997), Carnegie Mellon University: Carnegie Mellon University Pittsburg, PhD Thesis · Zbl 1016.68139
[61] Svensson, U., A continuum representation of fracture networks. Part I: method and basic test cases, J. Hydrol., 250, 1, 170-186, (2001)
[62] Painter, S.; Cvetkovic, V.; Mancillas, J.; Pensado, O., Time domain particle tracking methods for simulating transport with retention and first-order transformation, Water Resour. Res., 44, 1, (2008)
[63] Tatomir, A. B.; Szykiewicz, A.; Class, H.; Helming, R., Modeling two phase flow in large scale fractured porous media with an extended multiple interacting continua, Comput. Model. Eng. Sci., 77, 2, 81-112, (2011) · Zbl 1356.76364
[64] Verscheure, M.; Fourno, A.; Chilès, J. P., Joint inversion of fracture model properties for CO_{2} storage monitoring or oil recovery history matching, Oil Gas Sci. Technol.-Rev. Inst. Fr. Pét., 67, 2, 221-235, (2012)
[65] Warren, J. E.; Root, P. J., The behavior of naturally fractured reservoirs, SPE J., 3, 3, 245-255, (1963)
[66] Zimmerman, R.; Bodvarsson, G., Effective transmissivity of two-dimensional fracture networks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 33, 433-438, (1996)
[67] Zyvoloski, G. A.; Robinson, B. A.; Viswanathan, H. S., Generalized dual porosity: a numerical method for representing spatially variable sub-grid scale processes, Adv. Water Resour., 31, 535-544, (2008)
[68] Pruess, K., Brief Guide to the MINC Method for Modeling Flow and Transport in Fractured Media, (1992), Lawrence Berkeley Natl. Lab.: Lawrence Berkeley Natl. Lab. Berkeley, Technical report
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.