zbMATH — the first resource for mathematics

Sparsifying preconditioner for the time-harmonic Maxwell’s equations. (English) Zbl 1416.78038
Summary: This paper presents the sparsifying preconditioner for the time-harmonic Maxwell’s equations in the integral formulation. Following the work on sparsifying preconditioner for the Lippmann-Schwinger equation [the second author, Multiscale Model. Simul. 13, No. 2, 644–660 (2015; Zbl 1317.65087)], this paper generalizes that approach from the scalar wave case to the vector case. The key idea is to construct a sparse approximation to the dense system by minimizing the non-local interactions in the integral equation, which allows for applying sparse linear solvers to reduce the computational cost. When combined with the standard GMRES solver, the number of preconditioned iterations remains small and essentially independent of the frequency. This suggests that, when the sparsifying preconditioner is adopted, solving the dense integral system can be done as efficiently as solving the sparse system from PDE discretization.
78M25 Numerical methods in optics (MSC2010)
65F08 Preconditioners for iterative methods
65F50 Computational methods for sparse matrices
78A45 Diffraction, scattering
78M15 Boundary element methods applied to problems in optics and electromagnetic theory
Full Text: DOI
[1] Babuška, I. M.; Sauter, S. A., Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. Numer. Anal., 34, 6, 2392-2423, (1997) · Zbl 0894.65050
[2] Berenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 2, 185-200, (1994) · Zbl 0814.65129
[3] Beylkin, G.; Kurcz, C.; Monzón, L., Fast convolution with the free space Helmholtz Green’s function, J. Comput. Phys., 228, 8, 2770-2791, (2009) · Zbl 1165.65082
[4] Champagne, N. J.; Berryman, J. G.; Buettner, H. M., FDFD: a 3D finite-difference frequency-domain code for electromagnetic induction tomography, J. Comput. Phys., 170, 2, 830-848, (2001) · Zbl 0984.78012
[5] Chew, W. C.; Weedon, W. H., A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microw. Opt. Technol. Lett., 7, 13, 599-604, (1994)
[6] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93, (2012), Springer Science & Business Media
[7] Cooley, J. W.; Tukey, J. W., An algorithm for the machine calculation of complex Fourier series, Math. Comput., 19, 90, 297-301, (1965) · Zbl 0127.09002
[8] Duan, R.; Rokhlin, V., High-order quadratures for the solution of scattering problems in two dimensions, J. Comput. Phys., 228, 6, 2152-2174, (Apr. 2009)
[9] Duff, I. S.; Reid, J. K., The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math. Softw., 9, 3, 302-325, (1983) · Zbl 0515.65022
[10] Engquist, B.; Ying, L., Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation, Commun. Pure Appl. Math., 64, 5, 697-735, (2011) · Zbl 1229.35037
[11] Engquist, B.; Ying, L., Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers, Multiscale Model. Simul., 9, 2, 686-710, (2011) · Zbl 1228.65234
[12] George, A., Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10, 345-363, (1973), collection of articles dedicated to the memory of George E. Forsythe · Zbl 0259.65087
[13] Johnson, S. G., Notes on Perfectly Matched Layers (PMLs), Lecture Notes, (2008), Massachusetts Institute of Technology: Massachusetts Institute of Technology Massachusetts
[14] Liu, F.; Ying, L., Recursive sweeping preconditioner for the three-dimensional Helmholtz equation, SIAM J. Sci. Comput., 38, 2, A814-A832, (2016) · Zbl 1376.65035
[15] Liu, F.; Ying, L., Sparsify and sweep: an efficient preconditioner for the Lippmann-Schwinger equation, SIAM J. Sci. Comput., 40, 2, B379-B404, (2018) · Zbl 1392.65035
[16] Liu, J. W.H., The multifrontal method for sparse matrix solution: theory and practice, SIAM Rev., 34, 1, 82-109, (1992) · Zbl 0919.65019
[17] Müller, C., Foundations of the Mathematical Theory of Electromagnetic Waves, vol. 155, (2013), Springer Science & Business Media
[18] Nédélec, J.-C., Mixed finite elements in \(\mathbb{R}^3\), Numer. Math., 35, 3, 315-341, (1980) · Zbl 0419.65069
[19] Tsuji, P.; Engquist, B.; Ying, L., A sweeping preconditioner for time-harmonic Maxwell’s equations with finite elements, J. Comput. Phys., 231, 9, 3770-3783, (2012) · Zbl 1251.78013
[20] Tsuji, P.; Ying, L., A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations, Front. Math. China, 7, 2, 347-363, (2012) · Zbl 1253.78049
[21] Yee, K., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 3, 302-307, (1966) · Zbl 1155.78304
[22] Ying, L., Sparsifying preconditioner for pseudospectral approximations of indefinite systems on periodic structures, Multiscale Model. Simul., 13, 2, 459-471, (2015) · Zbl 1317.65086
[23] Ying, L., Sparsifying preconditioner for the Lippmann-Schwinger equation, Multiscale Model. Simul., 13, 2, 644-660, (2015) · Zbl 1317.65087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.