×

On a refinement-free Calderón multiplicative preconditioner for the electric field integral equation. (English) Zbl 1416.65078

Summary: We present a Calderón preconditioner for the electric field integral equation (EFIE), which does not require a barycentric refinement of the mesh and which yields a Hermitian, positive definite (HPD) system matrix allowing for the usage of the conjugate gradient (CG) solver. The resulting discrete equation system is immune to the low-frequency and the dense-discretization breakdown and, in contrast to existing Calderón preconditioners, no second discretization of the EFIE operator with Buffa-Christiansen (BC) functions is necessary. This preconditioner is obtained by leveraging on spectral equivalences between (scalar) integral operators, namely the single layer and the hypersingular operator known from electrostatics, on the one hand, and the Laplace-Beltrami operator on the other hand. Since our approach incorporates Helmholtz projectors, there is no search for global loops necessary and thus our method remains stable on multiply connected geometries. The numerical results demonstrate the effectiveness of this approach for both canonical and realistic (multi-scale) problems.

MSC:

65F08 Preconditioners for iterative methods
78M25 Numerical methods in optics (MSC2010)
78A25 Electromagnetic theory (general)
65R20 Numerical methods for integral equations

Software:

AGMG; LAMG
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Nédélec, J.-C., Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Applied Mathematical Sciences, vol. 144 (2001), Springer: Springer New York · Zbl 0981.35002
[2] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM: SIAM Philadelphia · Zbl 1002.65042
[3] Wilton, D. R.; Glisson, A. W., On improving the stability of the electric field integral equation at low frequencies, (USNC/URSI Spring Meeting Digest (1981)), 24
[4] Wu, W.-L.; Glisson, A. W.; Kajfez, D., A study of two numerical solution procedures for the electric field integral equation, Appl. Comput. Electromagn. Soc. J., 10, 3, 69-80 (1995)
[5] Burton, M.; Kashyap, S., A study of a recent, moment-method algorithm that is accurate to very low frequencies, Appl. Comput. Electromagn. Soc. J., 10, 3, 58-68 (1995)
[6] Vecchi, G., Loop-star decomposition of basis functions in the discretization of the EFIE, IEEE Trans. Antennas Propag., 47, 2, 339-346 (1999) · Zbl 0949.78018
[7] Miano, G.; Villone, F., A surface integral formulation of Maxwell equations for topologically complex conducting domains, IEEE Trans. Antennas Propag., 53, 12, 4001-4014 (2005) · Zbl 1369.78055
[8] Andriulli, F., Loop-star and loop-tree decompositions: analysis and efficient algorithms, IEEE Trans. Antennas Propag., 60, 5, 2347-2356 (2012) · Zbl 1369.78713
[9] Zhao, J.-S.; Chew, W. C., Integral equation solution of Maxwell’s equations from zero frequency to microwave frequencies, IEEE Trans. Antennas Propag., 48, 10, 1635-1645 (2000) · Zbl 1368.78013
[10] Qian, Z. G.; Chew, W. C., An augmented electric field integral equation for high-speed interconnect analysis, Microw. Opt. Technol. Lett., 50, 10, 2658-2662 (2008)
[11] Cheng, J.; Adams, R. J.; Young, J. C.; Khayat, M. A., Augmented EFIE with normally constrained magnetic field and static charge extraction, IEEE Trans. Antennas Propag., 63, 11, 4952-4963 (2015) · Zbl 1395.78011
[12] Sertel, K.; Volakis, J. L., Incomplete LU preconditioner for FMM implementation, Microw. Opt. Technol. Lett., 26, 4, 265-267 (2000)
[13] Carpentieri, B.; Bollhöfer, M., Symmetric inverse-based multilevel ILU preconditioning for solving dense complex non-Hermitian systems in electromagnetics, Prog. Electromagn. Res., 128, 55-74 (2012)
[14] Carpentieri, B.; Duff, I. S.; Giraud, L.; Sylvand, G., Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations, SIAM J. Sci. Comput., 27, 3, 774-792 (2005) · Zbl 1089.78023
[15] Pan, X.-M.; Sheng, X.-Q., Sparse approximate inverse preconditioner for multiscale dynamic electromagnetic problems, Radio Sci., 49, 11, 1041-1051 (2014)
[16] Wiedenmann, O.; Eibert, T. F., The effect of near-zone preconditioning on electromagnetic integral equations of first and second kind, Adv. Radio Sci., 11, 61-65 (2013)
[17] Vipiana, F.; Pirinoli, P.; Vecchi, G., A multiresolution method of moments for triangular meshes, IEEE Trans. Antennas Propag., 53, 7, 2247-2258 (2005) · Zbl 1368.78123
[18] Andriulli, F. P.; Tabacco, A.; Vecchi, G., A multiresolution approach to the electric field integral equation in antenna problems, SIAM J. Sci. Comput., 29, 1, 1-21 (2007) · Zbl 1134.78016
[19] Chen, R.-S.; Ding, J.; Ding, D.; Fan, Z.; Wang, D., A multiresolution curvilinear Rao-Wilton-Glisson basis function for fast analysis of electromagnetic scattering, IEEE Trans. Antennas Propag., 57, 10, 3179-3188 (2009) · Zbl 1369.78575
[20] Andriulli, F. P.; Tabacco, A.; Vecchi, G., Solving the EFIE at low frequencies with a conditioning that grows only logarithmically with the number of unknowns, IEEE Trans. Antennas Propag., 58, 5, 1614-1624 (2010) · Zbl 1369.78873
[21] Andriulli, F. P.; Vipiana, F.; Vecchi, G., Hierarchical bases for nonhierarchic 3-D triangular meshes, IEEE Trans. Antennas Propag., 56, 8, 2288-2297 (2008) · Zbl 1369.78396
[22] Adrian, S. B.; Andriulli, F. P.; Eibert, T. F., A hierarchical preconditioner for the electric field integral equation on unstructured meshes based on primal and dual Haar bases, J. Comput. Phys., 330, 365-379 (2017) · Zbl 1378.65080
[23] Christiansen, S. H.; Nédélec, J.-C., A preconditioner for the electric field integral equation based on Calderon formulas, SIAM J. Numer. Anal., 40, 3, 1100-1135 (2002) · Zbl 1021.78010
[24] Buffa, A.; Christiansen, S. H., A dual finite element complex on the barycentric refinement, Math. Comput., 76, 260, 1743-1770 (2007) · Zbl 1130.65108
[25] Andriulli, F. P.; Cools, K.; Bagci, H.; Olyslager, F.; Buffa, A.; Christiansen, S.; Michielssen, E., A multiplicative Calderon preconditioner for the electric field integral equation, IEEE Trans. Antennas Propag., 56, 8, 2398-2412 (2008) · Zbl 1369.78872
[26] Contopanagos, H.; Dembart, B.; Epton, M.; Ottusch, J.; Rokhlin, V.; Visher, J.; Wandzura, S., Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering, IEEE Trans. Antennas Propag., 50, 12, 1824-1830 (2002)
[27] Adams, R., Physical and analytical properties of a stabilized electric field integral equation, IEEE Trans. Antennas Propag., 52, 2, 362-372 (2004) · Zbl 1368.78005
[28] Zhang, Y.; Cui, T. J.; Chew, W. C.; Zhao, J.-S., Magnetic field integral equation at very low frequencies, IEEE Trans. Antennas Propag., 51, 8, 1864-1871 (2003)
[29] Adrian, S. B.; Andriulli, F. P.; Eibert, T. F., Hierarchical bases preconditioners for the electric field integral equation on multiply connected geometries, IEEE Trans. Antennas Propag., 62, 11, 5856-5861 (2014) · Zbl 1371.78097
[30] Andriulli, F. P.; Cools, K.; Bogaert, I.; Michielssen, E., On a well-conditioned electric field integral operator for multiply connected geometries, IEEE Trans. Antennas Propag., 61, 4, 2077-2087 (2013) · Zbl 1370.78372
[31] Adrian, S. B.; Andriulli, F. P.; Eibert, T. F., A Calderón preconditioner for the EFIE operator without barycentric refinement of the mesh, (IEEE International Symposium on Antennas and Propagation (2014), IEEE: IEEE Memphis, USA), 2180-2181
[32] Adrian, S. B.; Andriulli, F. P.; Eibert, T. F., A Hermitian and well-conditioned EFIE for fast iterative and direct solvers, (IEEE Antennas and Propagation International Symposium. IEEE Antennas and Propagation International Symposium, Vancouver, Canada (2015)), 742-743
[33] (Silver, S., Microwave Antenna Theory and Design. Microwave Antenna Theory and Design, IEE Electromagn. Waves Ser., vol. 19 (1984), P. Peregrinus on Behalf of the Institution of Electrical Engineers: P. Peregrinus on Behalf of the Institution of Electrical Engineers London, UK)
[34] Müller, C., Die Grundzüge einer mathematischen Theorie elektromagnetischer Schwingungen, Arch. Math., 1, 4, 296-302 (1948) · Zbl 0032.13302
[35] Rao, S.; Wilton, D.; Glisson, A., Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propag., 30, 3, 409-418 (1982)
[36] Cools, K.; Andriulli, F.; Olyslager, F.; Michielssen, E., Nullspaces of MFIE and Calderón preconditioned EFIE operators applied to toroidal surfaces, IEEE Trans. Antennas Propag., 57, 10, 3205-3215 (2009) · Zbl 1369.78717
[37] Steinbach, O., Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements (2010), Springer Science + Business Media: Springer Science + Business Media New York
[38] Hiptmair, R.; Schwab, C., Natural boundary element methods for the electric field integral equation on polyhedra, SIAM J. Numer. Anal., 40, 1, 66-86 (2002) · Zbl 1010.78014
[39] Steinbach, O.; Wendland, W. L., The construction of some efficient preconditioners in the boundary element method, Adv. Comput. Math., 9, 1-2, 191-216 (1998) · Zbl 0922.65076
[40] Hiptmair, R., Operator preconditioning, Comput. Math. Appl., 52, 5, 699-706 (2006) · Zbl 1125.65037
[41] Livne, O. E.; Brandt, A., Lean algebraic multigrid (LAMG): fast graph Laplacian linear solver, SIAM J. Sci. Comput., 34, 4, 499-522 (2012) · Zbl 1253.65045
[42] Kelner, J. A.; Orecchia, L.; Sidford, A.; Zhu, Z. A., A simple, combinatorial algorithm for solving SDD systems in nearly-linear time, (Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing (2013), ACM Press), 911 · Zbl 1293.68145
[43] Echeverri Bautista, M. A.; Francavilla, M. A.; Vipiana, F.; Vecchi, G., A hierarchical fast solver for EFIE-MoM analysis of multiscale structures at very low frequencies, IEEE Trans. Antennas Propag., 62, 3, 1523-1528 (2014) · Zbl 1370.78416
[44] Andriulli, F. P.; Vecchi, G., A Helmholtz-stable fast solution of the electric field integral equation, IEEE Trans. Antennas Propag., 60, 5, 2357-2366 (2012) · Zbl 1369.78714
[45] Y. Notay, AGMG Software and Documentation.; Y. Notay, AGMG Software and Documentation.
[46] Napov, A.; Notay, Y., An algebraic multigrid method with guaranteed convergence rate, SIAM J. Sci. Comput., 34, 2, 1079-1109 (2012)
[47] Adrian, S. B.; Andriulli, F. P.; Eibert, T. F., A well-conditioned, Hermitian, positive definite, combined field integral equation for simply and multiply connected geometries, (URSI International Symposium on Electromagnetic Theory (EMTS) (2016), IEEE: IEEE Espoo, Finland), 561-564
[48] Dahmen, W.; Stevenson, R., Element-by-element construction of wavelets satisfying stability and moment conditions, SIAM J. Numer. Anal., 37, 1, 319-352 (1999) · Zbl 0942.65130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.