×

zbMATH — the first resource for mathematics

A primer on persistent homology of finite metric spaces. (English) Zbl 1417.62013
Summary: Topological data analysis (TDA) is a relatively new area of research related to importing classical ideas from topology into the realm of data analysis. Under the umbrella term TDA, there falls, in particular, the notion of persistent homology PH, which can be described in a nutshell, as the study of scale-dependent homological invariants of datasets. In these notes, we provide a terse self-contained description of the main ideas behind the construction of persistent homology as an invariant feature of datasets, and its stability to perturbations.
MSC:
62-07 Data analysis (statistics) (MSC2010)
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62P10 Applications of statistics to biology and medical sciences; meta analysis
92C20 Neural biology
55N35 Other homology theories in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Azumaya, G., Corrections and supplementaries to my paper concerning Krull-Remak-Schmidts theorem, Nagoya Math J, 1, 117124, (1950) · Zbl 0040.01201
[2] Bardin J, Spreemann G, Hess K (2018) Topological exploration of artificial neuronal network dynamics. Netw Neurosci 1-19
[3] Bartlett, CW; Yeon Cheong, S.; Hou, L.; Paquette, J.; Yee Lum, P.; Jäger, G.; Battke, F.; Vehlow, C.; Heinrich, J.; Nieselt, K.; Sakai, R.; Aerts, J.; Ray, WC, An eqtl biological data visualization challenge and approaches from the visualization community, BMC Bioinform, 13, s8, (2012)
[4] Bauer U (2015) Ripser. https://github.com/Ripser/ripser
[5] Bauer U, Kerber M, Reininghaus J (2012) PHAT (Persistent homology algorithm toolbox). https://bitbucket.org/phat-code/phat · Zbl 1402.65187
[6] Brown, EN; Frank, LM; Tang, D.; Quirk, MC; Wilson, MA, A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells, J Neurosci, 18, 7411-7425, (1998)
[7] Burago D, Burago Y, Ivanov S (2001) A course in metric geometry, vol 33 of AMS graduate studies in Math. American Mathematical Society · Zbl 0981.51016
[8] Cámara PG (2017) Topological methods for genomics: present and future directions. Curr Opin Syst Biol 1:95-101 (Future of systems biology genomics and epigenomics)
[9] Cámara PG, Levine AJ, Rabadán R (2016a) Inference of ancestral recombination graphs through topological data analysis. PloS Comput Biol 12(8):1-25, 08
[10] Cámara, PG; Rosenbloom, DIS; Emmett, KJ; Levine, AJ; Rabadán, R., Topological data analysis generates high-resolution, genome-wide maps of human recombination, Cell Syst, 3, 83-94, (2016)
[11] Carlsson, G., Topology and data, Bull Am Math Soc, 46, 255-308, (2009) · Zbl 1172.62002
[12] Carlsson, G., Topological pattern recognition for point cloud data, Acta Numer, 23, 289368, (2014) · Zbl 1398.68615
[13] Carlsson, G.; Silva, V., No article title, Zigzag persistence. Found Comput Math, 10, 367-405, (2010) · Zbl 1204.68242
[14] Carlsson, G.; Mémoli, F., Characterization, stability and convergence of hierarchical clustering methods, J Mach Learn Res, 11, 1425-1470, (2010) · Zbl 1242.62050
[15] Carlsson, G.; Mémoli, F., No article title, Classifying clustering schemes. Found Comput Math, 13, 221-252, (2013) · Zbl 1358.62057
[16] Carlsson G, de Silva V, Morozov D (2009) Zigzag persistent homology and real-valued functions. In: Proceedings of the twenty-fifth annual symposium on computational geometry, SCG ’09, pp 247-256, New York, NY, USA. ACM · Zbl 1380.68385
[17] Crawley-Boevey, W., Decomposition of pointwise finite dimensional persistence modules, J Algebra Appl, 14, 1550066, (2012) · Zbl 1345.16015
[18] Chan, JM; Carlsson, G.; Rabadán, R., Topology of viral evolution, Proc Natl Acad Sci, 110, 18566-18571, (2013) · Zbl 1292.92014
[19] Chazal F, Cohen-Steiner D, Guibas LJ, Mémoli F, Oudot SY (2009) Gromov-Hausdorff stable signatures for shapes using persistence. In: Proceedings of the symposium on geometry processing, SGP ’09, pp 1393-1403, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association
[20] Chowdhury S, Dai B, Mémoli F (2018) The importance of forgetting: limiting memory improves recovery of topological characteristics from neural data. PloS One 13(9):1-20, 09
[21] Chazal F, Oudot SY, Glisse M, De Silva V (2016) The structure and stability of persistence modules. In: SpringerBriefs in mathematics. Springer, Berlin · Zbl 1362.55002
[22] Dabaghian Y, Mémoli F, Frank L, Carlsson G (2012) A topological paradigm for hippocampal spatial map formation using persistent homology. PloS Comput Biol 8(8):1-14, 08
[23] Cecco, L.; Nicolau, M.; Giannoccaro, M.; Daidone, MG; Bossi, P.; Locati, L.; Licitra, L.; Canevari, S., Head and neck cancer subtypes with biological and clinical relevance: meta-analysis of gene-expression data, Oncotarget, 6, 9627-9642, (2015)
[24] Edelsbrunner H, Harer J (2010) Computational topology – an introduction. American Mathematical Society, Providence · Zbl 1193.55001
[25] Emmett, KJ; Rabadán, R.; Ślzak, D. (ed.); Tan, A-H (ed.); Peters, JF (ed.); Schwabe, L. (ed.), Characterizing scales of genetic recombination and antibiotic resistance in pathogenic bacteria using topological data analysis, 540-551, (2014), Cham
[26] Emmett K, Rabadán R (2016) Quantifying reticulation in phylogenetic complexes using homology. In: Proceedings of the 9th EAI international conference on bio-inspired information and communications technologies (formerly BIONETICS), BICT’15, pp 193-196, ICST, Brussels, Belgium, Belgium (2016) ICST. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering
[27] Emmett K, Schweinhart B, Rabadán R (2016) Multiscale topology of chromatin folding. In: Proceedings of the 9th EAI international conference on bio-inspired information and communications technologies (formerly BIONETICS), BICT’15, pp 177-180, ICST, Brussels, Belgium, Belgium (2016) ICST. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering
[28] Fasy BT, Kim J, Lecci F, Maria C, Rouvreau V (2014) TDA : statistical tools for topological data analysis. https://cran.r-project.org/web/packages/TDA/index.html. Accessed 1 Dec 2018
[29] Frattini, V.; Pagnotta, SM; Tala Fan, JJ; Russo, MV; Lee, SB; Garofano, L.; Zhang, J.; Shi, P.; Lewis, G.; Sanson, H.; Frederick, V.; Castano, AM; Cerulo, L.; Rolland, DCM; Mall, R.; Mokhtari, K.; Elenitoba-Johnson, KSJ; Sanson, M.; Huang, X.; Ceccarelli, M.; Lasorella, A.; Iavarone, A., A metabolic function of FGFR3-TACC3 gene fusions in cancer, Nature, 553, 222-227, (2018)
[30] Giusti, C.; Ghrist, R.; Bassett, DS, Two’s company, three (or more) is a simplex, J Comput Neurosci, 41, 1-14, (2016)
[31] Ghrist RW (2014) Elementary applied topology, vol 1. Createspace, Seattle
[32] GUDHI Geometry Understanding in Higher Dimensions (2014) INRIA. http://gudhi.gforge.inria.fr/
[33] Hatcher A (2000) Algebraic topology. Cambridge University Press, Cambridge · Zbl 1044.55001
[34] Jacobson N (2012) Basic algebra II. Dover books on mathematics, 2nd edn. Dover Publications, Mineola
[35] Jardine N, Sibson R (1972) Mathematical taxonomy. Wiley series in probability and mathematical statistics, Wiley, New York · Zbl 0322.62065
[36] Kenet, T.; Bibitchkov, D.; Tsodyks, M.; Grinvald, A.; Arieli, A., Spontaneously emerging cortical representations of visual attributes, Nature, 425, 954-956, (2003)
[37] Kyeong S, Park S, Cheon K, Kim J, Song D, Kim E (2015) A new approach to investigate the association between brain functional connectivity and disease characteristics of attention-deficit/hyperactivity disorder: topological neuroimaging data analysis. PloS One 10(9):1-15, 09
[38] Lee, Y.; Barthel, SD; Dlotko, P.; Moosavi, SM; Hess, K.; Smit, B., High-throughput screening approach for nanoporous materials genome using topological data analysis: application to zeolites, J Chem Theory Comput, 14, 4427-4437, (2018)
[39] Lesnick, M., The theory of the interleaving distance on multidimensional persistence modules, Found Comput Math, 15, 613-650, (2015) · Zbl 1335.55006
[40] Lewis R (2014) CTL. https://github.com/appliedtopology/ctl
[41] Lesnick M, Rabadán R, Rosenbloom DIS (2018) Quantifying genetic innovation: mathematical foundations for the topological study of reticulate evolution. CoRR, arXiv:1804.01398
[42] Lee, J.; Wang, J.; Sa, JK; Ladewig, E.; Lee, H.; Lee, I.; Kang, HJ; Rosenbloom, DIS; Cámara, PG; Liu, Z.; Nieuwenhuizen, P.; Jung, SW; Choi, SW; Kim, J.; Chen, AH; Kim, K.; Shin, SY; Seo, YJ; Oh, J.; Shin, YJ; Park, C.; Kong, D.; Seol, HJ; Blumberg, AJ; Lee, J.; Iavarone, A.; Park, W.; Rabadán, R.; Nam, D., Spatiotemporal genomic architecture informs precision oncology in glioblastoma, Nat Genet, 49, 594-599, (2017)
[43] McNaughton, BL; Barnes, CA; O’Keefe, J., The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats, Exp Brain Res, 52, 41-49, (1983)
[44] Morozov D (2012) Dionysus. http://www.mrzv.org/software/dionysus/
[45] Munkres JR (1996) Elements of algebraic topology. Avalon Publishing, New York · Zbl 0673.55001
[46] Nanda V (2002) Perseus, the persistent homology software. http://www.sas.upenn.edu/ vnanda/perseus
[47] Nicolau, M.; Levine, AJ; Carlsson, G., Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, Proce Natl Acad Sci, 108, 7265-7270, (2011)
[48] Olin, A.; Henckel, E.; Chen, Y.; Lakshmikanth, T.; Pou, C.; Mikes, J.; Gustafsson, A.; Bernhardsson, AK; Zhang, C.; Bohlin, K.; Brodin, P., Stereotypic immune system development in newborn children, Cell, 174, 1277-1292.e14, (2018)
[49] Phinyomark, A.; Ibez-Marcelo, E.; Petri, G., Resting-state fmri functional connectivity: big data preprocessing pipelines and topological data analysis, IEEE Trans Big Data, 3, 415-428, (2017)
[50] Phinyomark, A.; Petri, G.; Ibáñez-Marcelo, E.; Osis, ST; Ferber, R., Analysis of big data in gait biomechanics: current trends and future directions, J Med Biol Eng, 38, 244-260, (2018)
[51] Reninghaus J (2014) DIPHA (a Distributed Persistent Homology Algorithm. https://github.com/DIPHA/dipha/
[52] Rucco, M.; Merelli, E.; Herman, D.; Ramanan, D.; Petrossian, T.; Falsetti, L.; Nitti, C.; Salvi, A., Using topological data analysis for diagnosis pulmonary embolism, J Theor Appl Comput Sci, 9, 41-55, (2015)
[53] Saggar M, Sporns O, Gonzalez-Castillo J, Bandettini PA, Carlsson G, Glover G, Reiss AL (2018) Towards a new approach to reveal dynamical organization of the brain using topological data analysis. Nat Commun
[54] Selinger, C.; Tisoncik-Go, J.; Menachery, VD; Agnihothram, S.; Law, GL; Chang, J.; Kelly, SM; Sova, P.; Baric, RS; Katze, MG, Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct mers-cov isolates, BMC Genom, 15, 1161, (2014)
[55] Sexton H, Vejdemo-Johansson M (2008) jPlex. http://comptop.stanford.edu/programs/jplex/
[56] Sgouralis, I.; Nebenfhr, A.; Maroulas, V., A bayesian topological framework for the identification and reconstruction of subcellular motion, SIAM J Imaging Sci, 10, 871-899, (2017) · Zbl 1400.92310
[57] Singh G, Mémoli F, Carlsson G (2007) Topological methods for the analysis of high dimensional data sets and 3D object recognition. In: Botsch M, Pajarola R, Chen B, Zwicker M (eds) Eurographics symposium on point-based graphics. The Eurographics Association
[58] Singh, G.; Mémoli, F.; Ishkhanov, T.; Sapiro, G.; Carlsson, G.; Ringach, DL, Topological analysis of population activity in visual cortex, J Vis, 8, 11, (2008)
[59] Spivak DI (2014) Categ Theory Sci. The MIT Press, Cambridge
[60] Tausz A, Vejdemo-Johansson M, Adams H (2014) JavaPlex: a research software package for persistent (co)homology. In: Hong H, Yap C (eds) Proceedings of ICMS 2014, lecture notes in computer science 8592, pp 129-136. http://appliedtopology.github.io/javaplex/ · Zbl 1402.65186
[61] Tierny J, Favelier G, Levine J, Gueunet C, Michaux M (2017) Topology toolkit. https://topology-tool-kit.github.io/index.html
[62] Torres BY, Oliveira JHM, Thomas AT, Rath P, Cumnock K, Schneider DS (2016) Tracking resilience to infections by mapping disease space. PLOS Biol 14(4):1-19, 04
[63] TGDA@OSU TRIPODS Mini course on persistent homology (2018). https://mbi.osu.edu/event/?id=1217
[64] Tralie C, Saul N (2019) Scikit-tda: topological data analysis for python
[65] Wadhwa R, Dhawan A, Williamson D, Scott J (2018) TDAstats. https://cran.r-project.org/package=TDAstats
[66] Xia, K.; Wei, GW, Persistent homology analysis of protein structure, flexibility, and folding, Int J Numer Methods Biomed Eng, 30, 814-844, (2014)
[67] Xia, K.; Feng, X.; Tong, Y.; Wei, GW, Persistent homology for the quantitative prediction of fullerene stability, J Comput Chem, 36, 408-422, (2015)
[68] Yao, Y.; Sun, J.; Huang, X.; Bowman, GR; Singh, G.; Lesnick, M.; Guibas, LJ; Pande, VS; Carlsson, G., Topological methods for exploring low-density states in biomolecular folding pathways, J Chem Phys, 130, 144115, (2009)
[69] Zhang, K.; Ginzburg, I.; McNaughton, BL; Sejnowski, TJ, Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells, J Neurophys, 79, 1017-1044, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.