zbMATH — the first resource for mathematics

A novel geometry-adaptive Cartesian grid based immersed boundary-lattice Boltzmann method for fluid-structure interactions at moderate and high Reynolds numbers. (English) Zbl 1416.76247
Summary: A novel computational framework which combines the lattice Boltzmann method (LBM) and an improved immersed boundary method (IBM) based on a dynamic geometry-adaptive Cartesian grid system is introduced for the fluid-structure interaction (FSI) problems at moderate and high Reynolds numbers. In this framework, the fluid dynamics is obtained by solving the discrete lattice Boltzmann equation. The boundary conditions at the fluid-structure interfaces are handled by an improved IBM based on a feedback scheme, which drives the predicted flow velocity (calculated after the LBM stream process without the IBM body force) near the immersed boundaries to match the solid velocity. In the present IBM, the feedback coefficient is mathematically derived and explicitly approximated. The Lagrangian force density is divided into two parts: one is the traction caused by the predicted flow velocity, and the other is caused by the acceleration of the immersed boundary. Such treatment significantly enhances the numerical stability for modelling FSI problems involving small structure-to-fluid mass ratios. A novel dynamic geometry-adaptive refinement is applied to provide fine resolution around the immersed geometries and coarse resolution in the far field. The overlapping grids between two adjacent refinements consist of two layers. In order to enhance the numerical stability, two-layer “ghost nodes” are generated within the immersed body domain which is a non-fluid area. The movement of fluid-structure interfaces only causes adding or removing grids at the boundaries of refinements and consequently a high mesh-update efficiency is guaranteed. Finally, large eddy simulation models are incorporated into the framework to model turbulent flows at relatively high Reynolds numbers. Several validation cases, including an impulsively started flow over a vertical plate, flow over stationary and oscillating cylinders, flow over flapping foils, flexible filaments in a uniform flow, turbulent flow over a wavy boundary, flow over a stationary sphere and a dragonfly in hovering flight, are conducted to verify the accuracy and fidelity of the present solver over a range of Reynolds numbers.

76M28 Particle methods and lattice-gas methods
76F65 Direct numerical and large eddy simulation of turbulence
Full Text: DOI
[1] Bhutta, M. M.A.; Hayat, N.; Farooq, A. U.; Ali, Z.; Jamil, S. R.; Hussain, Z., Vertical axis wind turbine - a review of various configurations and design techniques, Renew. Sustain. Energy Rev., 16, 1926-1939, (2012)
[2] Torres, G.; Mueller, T. J., Micro aerial vehicle development: design, components, fabrication, and flight-testing, (AUVSI Unmanned Systems 2000 Symposium and Exhibition, (2000)), 11-13
[3] Ifju, P.; Jenkins, D.; Ettinger, S.; Lian, Y.; Shyy, W.; Waszak, M., Flexible-wing-based micro air vehicles, (40th AIAA Aerospace Sciences Meeting & Exhibit, (2002)), 705
[4] Hu, H.; Liu, J.; Dukes, I.; Francis, G., Design of 3D swim patterns for autonomous robotic fish, (2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2006), IEEE), 2406-2411
[5] Wang, Z. J., Dissecting insect flight, Annu. Rev. Fluid Mech., 37, 183-210, (2005) · Zbl 1117.76080
[6] Wu, T. Y., Fish swimming and bird/insect flight, Annu. Rev. Fluid Mech., 43, 25-58, (2011) · Zbl 1210.76095
[7] Gazzola, M.; Argentina, M.; Mahadevan, L., Scaling macroscopic aquatic locomotion, Nat. Phys., 10, 758-812, (2014)
[8] Simens, M. P.; Jiménez, J.; Hoyas, S.; Mizuno, Y., A high-resolution code for turbulent boundary layers, J. Comput. Phys., 228, 4218-4231, (2009) · Zbl 1273.76009
[9] Douglass, R. W.; Carey, G. F.; White, D. R.; Hansen, G. A.; Kallinderis, Y.; Weatherill, N. P., Current views on grid generation: summaries of a panel discussion, Numer. Heat Transf., Part B, Fundam., 41, 211-237, (2002)
[10] Samareh, J. A., Status and future of geometry modeling and grid generation for design and optimization, J. Aircr., 36, 97-104, (1999)
[11] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271, (1972) · Zbl 0244.92002
[12] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261, (2005) · Zbl 1117.76049
[13] Huang, W.-X.; Shin, S. J.; Sung, H. J., Simulation of flexible filaments in a uniform flow by the immersed boundary method, J. Comput. Phys., 226, 2206-2228, (2007) · Zbl 1388.74037
[14] Favier, J.; Revell, A.; Pinelli, A., A lattice Boltzmann-immersed boundary method to simulate the fluid interaction with moving and slender flexible objects, J. Comput. Phys., 261, 145-161, (2014) · Zbl 1349.76679
[15] Sotiropoulos, F.; Yang, X., Immersed boundary methods for simulating fluid-structure interaction, Prog. Aerosp. Sci., 65, 1-21, (2014)
[16] Wang, L.; Currao, G. M.D.; Han, F.; Neely, A. J.; Young, J.; Tian, F. B., An immersed boundary method for fluid-structure interaction with compressible multiphase flows, J. Comput. Phys., 346, 131-151, (2017) · Zbl 1378.74038
[17] Vanella, M.; Rabenold, P.; Balaras, E., A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid-structure interaction problems, J. Comput. Phys., 229, 6427-6449, (2010) · Zbl 1425.76174
[18] Liska, S.; Colonius, T., A fast immersed boundary method for external incompressible viscous flows using lattice Green’s functions, J. Comput. Phys., 331, 257-279, (2017) · Zbl 1378.76083
[19] Zheng, X.; Mittal, R.; Peng, Y., A hierarchical nested grid approach for local refinement coupled with an immersed boundary method, (Computational Fluid Dynamics, (2008), Springer: Springer Berlin, Heidelberg), 461-466
[20] Griffith, B. E.; Hornung, R. D.; McQueen, D. M.; Peskin, C. S., An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys., 223, 10-49, (2007) · Zbl 1163.76041
[21] Kim, J.; Kim, D.; Choi, H., An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys., 171, 132-150, (2001) · Zbl 1057.76039
[22] Wu, J.; Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J. Comput. Phys., 228, 1963-1979, (2009) · Zbl 1243.76081
[23] Seo, J. H.; Mittal, R., A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations, J. Comput. Phys., 230, 7347-7363, (2011) · Zbl 1408.76162
[24] Luo, H.; Dai, H.; Sousa, P. J.S. A.F.; Yin, B., On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries, Comput. Fluids, 56, 61-76, (2012) · Zbl 1365.76180
[25] Tian, F.-B.; Dai, H.; Luo, H.; Doyle, J. F.; Rousseau, B., Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems, J. Comput. Phys., 258, 451-469, (2014) · Zbl 1349.76274
[26] Feng, Z.-G.; Michaelides, E. E., The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys., 195, 602-628, (2004) · Zbl 1115.76395
[27] Krüger, T.; Varnik, F.; Raabe, D., Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method, Comput. Math. Appl., 61, 3485-3505, (2011) · Zbl 1225.76231
[28] Zhu, L.; He, G.; Wang, S.; Miller, L.; Zhang, X.; You, Q.; Fang, S., An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application, Comput. Math. Appl., 61, 3506-3518, (2011) · Zbl 1225.76249
[29] Tian, F.-B.; Luo, H.; Zhu, L.; Liao, J. C.; Lu, X.-Y., An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments, J. Comput. Phys., 230, 7266-7283, (2011) · Zbl 1327.76106
[30] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases, I: small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525, (1954) · Zbl 0055.23609
[31] d’Humières, D., Generalized lattice Boltzmann equation, (AIAA Rarefied Gas Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics, vol. 159, (1992)), 450-458
[32] d’Humières, D., Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., 360, 437-451, (2002) · Zbl 1001.76081
[33] Luo, L.-S.; Liao, W.; Chen, X.; Peng, Y.; Zhang, W., Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations, Phys. Rev. E, 83, (2011)
[34] Sterling, J. D.; Chen, S., Stability analysis of lattice Boltzmann methods, J. Comput. Phys., 123, 196-206, (1996) · Zbl 0840.76078
[35] Zhou, X.-Y.; Shi, B.-C.; Wang, N.-C., Numerical simulation of LBGK model for high Reynolds number flow, Chin. Phys., 13, 712, (2004)
[36] Choi, H.; Moin, P., Grid-point requirements for large eddy simulation: Chapman’s estimates revisited, Phys. Fluids, 24, (2012)
[37] Filippova, O.; Hanel, D., Grid refinement for lattice-BGK models, J. Comput. Phys., 147, 219-228, (1998) · Zbl 0917.76061
[38] Sui, Y.; Chew, Y.-T.; Roy, P.; Low, H.-T., A hybrid method to study flow-induced deformation of three-dimensional capsules, J. Comput. Phys., 227, 6351-6371, (2008) · Zbl 1160.76028
[39] Eitel-Amor, G.; Meinke, M.; Schröder, W., Lattice Boltzmann simulations with locally refined meshes, (20th AIAA Computational Fluid Dynamics Conference, (2011)), 3398
[40] Iaccarino, G.; Ham, F., LES on Cartesian grids with anisotropic refinement, (Complex Effects in Large Eddy Simulations, (2007), Springer: Springer Berlin, Heidelberg), 219-233 · Zbl 1303.76040
[41] de Tullio, M. D.; De Palma, P.; Iaccarino, G.; Pascazio, G.; Napolitano, M., An immersed boundary method for compressible flows using local grid refinement, J. Comput. Phys., 225, 2098-2117, (2007) · Zbl 1118.76043
[42] MacNeice, P.; Olson, K. M.; Mobarry, C.; De Fainchtein, R.; Packer, C., PARAMESH: a parallel adaptive mesh refinement community toolkit, Comput. Phys. Commun., 126, 330-354, (2000) · Zbl 0953.65088
[43] Yu, Z.; Fan, L.-S., An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation, J. Comput. Phys., 228, 6456-6478, (2009) · Zbl 1261.76048
[44] Bungartz, H.-J.; Mehl, M.; Neckel, T.; Weinzierl, T., The PDE framework Peano applied to fluid dynamics: an efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids, Comput. Mech., 46, 103-114, (2010) · Zbl 1301.76056
[45] Neumann, P.; Neckel, T., A dynamic mesh refinement technique for lattice Boltzmann simulations on octree-like grids, Comput. Mech., 1-17, (2013) · Zbl 1312.76051
[46] Wu, J.; Shu, C., A solution-adaptive lattice Boltzmann method for two-dimensional incompressible viscous flows, J. Comput. Phys., 230, 2246-2269, (2011) · Zbl 1391.76643
[47] Wu, J.; Qiu, Y.; Shu, C.; Zhao, N.; Wang, X., An adaptive immersed boundary-lattice Boltzmann method for simulating a flapping foil in ground effect, Comput. Fluids, 106, 171-184, (2015) · Zbl 1390.76781
[48] Guo, X.; Yao, J.; Zhong, C.; Cao, J., A hybrid adaptive-gridding immersed-boundary lattice Boltzmann method for viscous flow simulations, Appl. Math. Comput., 267, 529-553, (2015)
[49] Guzik, S. M.; Weisgraber, T. H.; Colella, P.; Alder, B. J., Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement, J. Comput. Phys., 259, 461-487, (2014) · Zbl 1349.76687
[50] Angelidis, D.; Chawdhary, S.; Sotiropoulos, F., Unstructured cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows, J. Comput. Phys., 325, 272-300, (2016) · Zbl 1375.76033
[51] Tezduyar, T. E.; Sathe, S.; Keedy, R.; Stein, K., Space-time finite element techniques for computation of fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 195, 2002-2027, (2006) · Zbl 1118.74052
[52] Brummelen, E. H.V., Partitioned iterative solution methods for fluid-structure interaction, Int. J. Numer. Methods Fluids, 65, 3-27, (2011) · Zbl 1427.74049
[53] Tian, F.-B., FSI modeling with the DSD/SST method for the fluid and finite difference method for the structure, Comput. Mech., 54, 581-589, (2014) · Zbl 1310.74020
[54] Tian, F.-B.; Wang, Y.; Young, J.; Lai, J. C.S., An FSI solution technique based on the DSD/SST method and its applications, Math. Models Methods Appl. Sci., 25, 2257-2285, (2015) · Zbl 1327.74059
[55] Bhardwaj, R.; Mittal, R., Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation, AIAA J., 50, 1638-1642, (2012)
[56] Connell, B. S.H.; Yue, D. K.P., Flapping dynamics of a flag in a uniform stream, J. Fluid Mech., 581, 33-67, (2007) · Zbl 1124.76011
[57] Eldredge, J. D., Dynamically coupled fluid-body interactions in vorticity-based numerical simulations, J. Comput. Phys., 227, 9170-9194, (2008) · Zbl 1146.76039
[58] Borazjani, I.; Ge, L.; Sotiropoulos, F., Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies, J. Comput. Phys., 227, 7587-7620, (2008) · Zbl 1213.76129
[59] Wang, C.; Eldredge, J. D., Strongly coupled dynamics of fluids and rigid-body systems with the immersed boundary projection method, J. Comput. Phys., 295, 87-113, (2015) · Zbl 1349.76280
[60] Degroote, J.; Bathe, K.-J.; Vierendeels, J., Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction, Comput. Struct., 87, 793-801, (2009)
[61] Goza, A.; Colonius, T., A strongly-coupled immersed-boundary formulation for thin elastic structures, J. Comput. Phys., 336, 401-411, (2017) · Zbl 1375.76047
[62] Smagorinsky, J., General circulation experiments with the primitive equations, I: the basic experiment, Mon. Weather Rev., 91, 99-164, (1963)
[63] Lilly, D. K., A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, Fluid Dyn., 4, 633-635, (1992)
[64] Meneveau, C.; Lund, T. S.; Cabot, W. H., A lagrangian dynamic subgrid-scale model of turbulence, J. Fluid Mech., 319, 353-385, (1996) · Zbl 0882.76029
[65] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61, 6546, (2000)
[66] Suga, K.; Kuwata, Y.; Takashima, K.; Chikasue, R., A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows, Comput. Math. Appl., 69, 518-529, (2015)
[67] Balaras, E., Modeling complex boundaries using an external force field on fixed cartesian grids in large-eddy simulations, Comput. Fluids, 33, 375-404, (2004) · Zbl 1088.76018
[68] Yang, J.; Balaras, E., An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, J. Comput. Phys., 215, 12-40, (2006) · Zbl 1140.76355
[69] Dong, Y.-H.; Sagaut, P.; Marie, S., Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method, Phys. Fluids, 20, (2008) · Zbl 1182.76212
[70] Kang, S.; Lightbody, A.; Hill, C.; Sotiropoulos, F., High-resolution numerical simulation of turbulence in natural waterways, Adv. Water Resour., 34, 98-113, (2011)
[71] Gilmanov, A.; Le, T. B.; Sotiropoulos, F., A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains, J. Comput. Phys., 300, 814-843, (2015) · Zbl 1349.74323
[72] Wang, W.-Q.; Yan, Y.; Tian, F.-B., A simple and efficient implicit direct forcing immersed boundary model for simulations of complex flow, Appl. Math. Model., 43, 287-305, (2017)
[73] Yang, X.; Sotiropoulos, F., A new class of actuator surface models for wind turbines, Wind Energy, (2018), available online
[74] Peng, Y.; Shu, C.; Chew, Y. T.; Niu, X. D.; Lu, X. Y., Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid flows, J. Comput. Phys., 218, 460-478, (2006) · Zbl 1161.76552
[75] Guo, Z.-L.; Zheng, C.-G.; Shi, B.-C., Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chin. Phys., 11, 366, (2002)
[76] He, X.; Luo, L.-S.; Dembo, M., Some progress in lattice Boltzmann method, part I: nonuniform mesh grids, J. Comput. Phys., 129, 357-363, (1996) · Zbl 0868.76068
[77] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517, (2002) · Zbl 1123.74309
[78] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105, 354-366, (1993) · Zbl 0768.76049
[79] Iaccarino, G.; Verzicco, R., Immersed boundary technique for turbulent flow simulations, Appl. Mech. Rev., 56, 331-347, (2003)
[80] Deng, H.-B.; Xu, Y.-Q.; Chen, D.-D.; Dai, H.; Wu, J.; Tian, F.-B., On numerical modeling of animal swimming and flight, Comput. Mech., 52, 1221-1242, (2013)
[81] Newmark, N. M., A method of computation for structural dynamics, J. Eng. Mech., 85, 67-94, (1959)
[82] Berthelsen, P. A.; Faltinsen, O. M., A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries, J. Comput. Phys., 227, 4354-4397, (2008) · Zbl 1388.76199
[83] Taneda, S.; Honji, H., Unsteady flow past a flat plate normal to the direction of motion, J. Phys. Soc. Jpn., 30, 262-272, (1971)
[84] Koumoutsakos, P.; Shiels, D., Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate, J. Fluid Mech., 328, 177-227, (1996) · Zbl 0890.76061
[85] Rajani, B. N.; Kandasamy, A.; Majumdar, S., Numerical simulation of laminar flow past a circular cylinder, Appl. Math. Model., 33, 1228-1247, (2009) · Zbl 1168.76305
[86] Dimopoulos, H. G.; Hanratty, T. J., Velocity gradients at the wall for flow around a cylinder for Reynolds numbers between 60 and 360, J. Fluid Mech., 33, 303-319, (1968)
[87] Homann, F., Influence of higher viscosity on flow around cylinder, Forsch. Geb. Ing.wes., 17, 1-10, (1936)
[88] Lu, X.-Y.; Dalton, C., Calculation of the timing of vortex formation from an oscillating cylinder, J. Fluids Struct., 10, 527-541, (1996)
[89] Guilmineau, E.; Queutey, P., A numerical simulation of vortex shedding from an oscillating circular cylinder, J. Fluids Struct., 16, 773-794, (2002)
[90] Russell, D.; Wang, Z. J., A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow, J. Comput. Phys., 191, 177-205, (2003) · Zbl 1160.76389
[91] Linnick, M. N.; Fasel, H. F., A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, J. Comput. Phys., 204, 157-192, (2005) · Zbl 1143.76538
[92] Kinsey, T.; Dumas, G., Parametric study of an oscillating airfoil in a power-extraction regime, AIAA J., 46, 1318-1330, (2008)
[93] Johnson, A. A.; Tezduyar, T. E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. Methods Appl. Mech. Eng., 119, 73-94, (1994) · Zbl 0848.76036
[94] Visbal, M. R., High-fidelity simulation of transitional flows past a plunging airfoil, AIAA J., 47, 2685-2697, (2009)
[95] Gurugubelli, P. S.; Jaiman, R. K., Self-induced flapping dynamics of a flexible inverted foil in a uniform flow, J. Fluid Mech., 781, 657-694, (2015) · Zbl 1359.76168
[96] Bao, C.-Y.; Tang, C.; Yin, X.-Z.; Lu, X.-Y., Flutter of finite-span flexible plates in uniform flow, Chin. Phys. Lett., 27, (2010)
[97] Zhang, J.; Childress, S.; Libchaber, A.; Shelley, M., Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind, Nature, 408, 835-839, (2000)
[98] Heathcote, S.; Gursul, I., Flexible flapping airfoil propulsion at low Reynolds numbers, AIAA J., 45, 1066-1079, (2007)
[99] Hudson, J. D.; Dykhno, L.; Hanratty, T. J., Turbulence production in flow over a wavy wall, Exp. Fluids, 20, 257-265, (1996)
[100] Calhoun, R. J.; Street, R. L., Turbulent flow over a wavy surface: neutral case, J. Geophys. Res., Oceans, 106, 9277-9293, (2001)
[101] Angelis, V. D.; Lombardi, P.; Banerjee, S., Direct numerical simulation of turbulent flow over a wavy wall, Phys. Fluids, 9, 2429-2442, (1997)
[102] Saric, W. S., Görtler vortices, Annu. Rev. Fluid Mech., 26, 379-409, (1994) · Zbl 0802.76027
[103] Sreenivasan, K. R., The turbulent boundary layer, (Frontiers in Experimental Fluid Mechanics, (1989), Springer), 159-209
[104] Sakamoto, H.; Haniu, H., A study on vortex shedding from spheres in a uniform flow, J. Fluids Eng., 112, 386-392, (1990)
[105] Leweke, T.; Provansal, M.; Ormieres, D.; Lebescond, R., Vortex dynamics in the wake of a sphere, Phys. Fluids, 11, S12, (1999)
[106] Yun, G.; Kim, D.; Choi, H., Vortical structures behind a sphere at subcritical Reynolds numbers, Phys. Fluids, 18, (2006)
[107] Clift, R.; Grace, J. R.; Weber, M. E., Bubbles, Drops, and Particles, (2005), Courier Corporation
[108] Roos, F. W.; Willmarth, W. W., Some experimental results on sphere and disk drag, AIAA J., 9, 285-291, (1971)
[109] Rodriguez, I.; Borell, R.; Lehmkuhl, O.; Segarra, C. D.P.; Oliva, A., Direct numerical simulation of the flow over a sphere at Re = 3700, J. Fluid Mech., 679, 263-287, (2011) · Zbl 1241.76302
[110] Kim, D.; Choi, H., Large Eddy Simulation of Turbulent Flow Over a Sphere Using an Immersed Boundary Method, (2001), Seoul National Univ (Korea) School of Mechanical and Aerospace Engineering, Technical Report
[111] Bazilevs, Y.; Yan, J.; de Stadler, M.; Sarkar, S., Computation of the flow over a sphere at Re = 3700: a comparison of uniform and turbulent inflow conditions, J. Appl. Mech., 81, (2014)
[112] Hunt, J. C.R.; Wray, A.; Moin, P., Eddies, Stream, and Convergence Zones in Turbulent Flows, (1988), Center for Turbulence Research Report CTR-S88
[113] Seidl, V.; Muzaferija, S.; Perić, M., Parallel DNS with local grid refinement, Appl. Sci. Res., 59, 379-394, (1997) · Zbl 0911.76069
[114] Norberg, R., The pterostigma of insect wings an inertial regulator of wing pitch, J. Comp. Physiol., 81, 9-22, (1972)
[115] Liang, Z.; Dong, H., Computational study of wing-wake interactions between ipsilateral wings of dragonfly in flight, (39th AIAA Fluid Dynamics Conference, (2009)), 4192
[116] Premnath, K. N.; Abraham, J., Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow, J. Comput. Phys., 224, 539-559, (2007) · Zbl 1116.76066
[117] Norberg, R., Hovering flight of the dragonfly Aeschna juncea L., kinematics and aerodynamics, (Swimming and Flying in Nature, (1975), Springer), 763-781
[118] Hu, Z.; Deng, X.-Y., Aerodynamic interaction between forewing and hindwing of a hovering dragonfly, Acta Mech. Sin., 30, 787-799, (2014)
[119] Liu, H., Size effects on insect hovering aerodynamics: an integrated computational study, Bioinspir. Biomim., 4, (2009)
[120] Shyy, W.; Aono, H.; Chimakurthi, S. K.; Trizila, P.; Kang, C.-K.; Cesnik, C. E.S.; Liu, H., Recent progress in flapping wing aerodynamics and aeroelasticity, Prog. Aerosp. Sci., 46, 284-327, (2010)
[121] Okamoto, M.; Yasuda, K.; Azuma, A., Aerodynamic characteristics of the wings and body of a dragonfly, J. Exp. Biol., 199, 281-294, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.