Hadamard star configurations. (English) Zbl 1423.14297

Let \(X, Y\subset \mathbb{P}^n\) be varieties. The Hadamard product of \(X\) and \(Y\) inside \(\mathbb{P}^n\) is the closure inside \(\mathbb{P}^n\) of the rational map \(X\times Y\dashrightarrow \mathbb{P}^n\) defined by the formula \(([x_0:\dots :x_n],[y_0:\dots: y_n])\mapsto [x_0y_0:\dots:x_ny_n]\), with \([x_0:\dots :x_n]\in X\) and \([y_0:\dots:y_n]\in Y\) ([J. Kileel et al., Found. Comput. Math. 18, No. 4, 1043–1071 (2018; Zbl 1408.14191)]).
The authors use the Hadamard product to construct certain \(\ast\)-configuration of codimension \(c\) linear subspaces of \(\mathbb {P}^n\), generalizing the case \(n=c=2\) done in [C. Bocci et al., J. Algebra 448, 595–617 (2016; Zbl 1387.14151)]. Then they classify all \(\star\)-configurations which may be obtained using Hadamard products.


14M99 Special varieties
14T05 Tropical geometry (MSC2010)
Full Text: DOI arXiv Euclid


[1] C. Bocci, G. Calussi, G. Fatabbi and A. Lorenzini, On Hadamard products of linear varieties, J. Alg. Appl. 16 (2016), DOI: 10.1142/S0219498817501559. · Zbl 1421.14014
[2] —-, The Hilbert function of some Hadamard products, Collect. Math. 69 (2018), 205-220. · Zbl 1400.14038
[3] C. Bocci, E. Carlini and J. Kileel, Hadamard products of linear spaces, J. Algebra 448 (2016), 595-617. · Zbl 1387.14151
[4] C. Bocci and B. Harbourne, Comparing powers and symbolic powers of ideals, J. Alg. Geom. 19 (2010), 399-417. · Zbl 1198.14001
[5] E. Carlini, E. Guardo and A. Van Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20. · Zbl 1303.14062
[6] E. Carlini and A. Van Tuyl, Star configuration points and generic plane curves, Proc. AMS 139 (2011), 4181-4192. · Zbl 1247.14051
[7] M.A. Cueto, J. Morton and B. Sturmfels, Geometry of the restricted Boltzmann machine, Algebraic methods in statistics and probability, II, Contemp. Math. 516 (2010), 135-153. · Zbl 05777868
[8] M.A. Cueto, E.A. Tobis and J. Yu, An implicitization challenge for binary factor analysis, J. Symb. Comp. 45 (2010), 1296-1315. · Zbl 1203.14057
[9] N. Friedenberg, A. Oneto and R.L. Williams, Minkowski sums and Hadamard products of algebraic varieties, in Combinatorial algebraic geometry, G. Smith and B. Sturmfels, eds., Fields Inst. Comm. 80 (2017), 133-157. · Zbl 1390.14157
[10] A.V. Geramita, B. Harbourne and J. Migliore, Star configurations in \(\mathbb{P}^n\), J. Algebra 376 (2013), 279-299. · Zbl 1284.14073
[11] A.V. Geramita, B. Harbourne, J. Migliore and U. Nagel, Matroid configurations and symbolic powers of their ideals, Trans. Amer. Math. Soc. 369 (2017), 7049-7066. · Zbl 1391.14109
[12] J. Kileel, Z. Kukelova, T. Pajdla and B. Sturmfels, Distortion varieties, Found. Comp. Math. (2017),. · Zbl 1408.14191
[13] D. Maclagan and B. Sturmfels, Introduction to tropical geometry, Grad. Stud. Math. 161 (2015). · Zbl 1321.14048
[14] J.P. Park and Y.S. Shin, The minimal free resolution of a star-configuration in \(\mathbb{P}^n\), J. Pure Appl. Alg. 219 (2015), 2124-2133. · Zbl 1310.13023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.