zbMATH — the first resource for mathematics

On equivariant Euler characteristics. (English) Zbl 0708.19004
Let G be a finite group of symmetries of a compact manifold M. In string theory one uses an Euler characteristic based on simultaneous fixed-point sets of commuting pairs of elements of G. The authors show that this is the same as the Euler characteristic of the equivariant K-theory \(K^*_ G(M)\). The method depends on expressing \(K^*_ G(M)\) tensored with the complex numbers in terms of the non-equivariant K- theory of the fixed-point sets of single elements of G.
Reviewer: R.J.Steiner

19L47 Equivariant \(K\)-theory
55N91 Equivariant homology and cohomology in algebraic topology
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Full Text: DOI
[1] Atiyah, M.F., K -theory, (1967), Benjamin New York · Zbl 0735.57001
[2] Atiyah, M.F.; Bott, R., The moment map and equivariant cohomology, Topology, 23, 1-28, (1984) · Zbl 0521.58025
[3] Atiyah, M.F.; Segal, G.B., The index of elliptic operators II, Ann. of math., 87, 531-545, (1968) · Zbl 0164.24201
[4] Baum, P.; Brylinski, J.L.; MacPherson, R., Cohomologieéquivariante délocalisée, C.R. acad. sci. Paris, 300, 605-608, (1985) · Zbl 0589.55003
[5] Baum, P.; Connes, A., Chern character for discrete groups, () · Zbl 0656.55005
[6] Brieskorn, E., Singular elements of semi-simple groups, Proc. international congress of mathematical, Vol. 2, 279-284, (1970), Nice
[7] Dixon, L.; Harvey, J.A.; Vafa, C.; Witten, E., Strings on orbifolds, Nucl. phys. B, 261, 678, (1985)
[8] M.J. \scHopkins, N.J. \scKuhn and D.C. \scRavenel: Generalized group characters and complex oriented cohomology theories, (to appear).
[9] Lusztig, G., Leading coefficients of character values of Hecke algebras, A.M.S. proc. symp. in pure maths., 47, 235-262, (1987)
[10] McKay, J., Graphs, singularities and finite groups, American math. soc. proc. symp. pure math., 37, 235-262, (1980)
[11] Segal, G.B., Equivariant K -theory, Publ. math. inst. hautes etudes sci. Paris, (1968) · Zbl 0199.26202
[12] Witten, E., Supersymmetry and Morse theory, J. diff. geom., 17, 661-692, (1982) · Zbl 0499.53056
[13] Dijkgraaf, R.; Vafa, C.; Verlinde, E.; Verlinde, H., The operator algebra of orbifold models, Commun. math. phys., 123, 485-526, (1989) · Zbl 0674.46051
[14] R. \scDijkgraaf and E. \scWitten: Topological gauge theories and group cohomology, (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.