Toric manifolds over cyclohedra. (English) Zbl 1435.55004

Summary: We study the action of the dihedral group on the (equivariant) cohomology of the toric manifolds associated with cycle graphs.


55N91 Equivariant homology and cohomology in algebraic topology
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
05E18 Group actions on combinatorial structures
14F43 Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies)
Full Text: arXiv Euclid


[1] M. Carr and S.L. Devadoss: Coxeter complexes and graph-associahedra, Topology Appl. 153 (2006), 2155-2168. · Zbl 1099.52001
[2] F. Chapoton, S. Fomin and A. Zelevinsky: Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), 537-566. · Zbl 1018.52007
[3] S. Choi and H. Park: A new graph invariant arises in toric topology, J. Math. Soc. Japan 67 (2015), 699-720. · Zbl 1326.57044
[4] P. Drube and P. Pongtanapaisan: Annular non-crossing matchings, J. Integer Seq. 19 (2016), Article 16.2.4 · Zbl 1336.05014
[5] A.M. Garsia and D. Stanton: Group actions of Stanley-Reisner rings and invariants of permutation groups, Adv. Math., 51 (1984), 107-201. · Zbl 0561.06002
[6] R.W. Goldbach and R. Tijdeman: Pairings of \(2n\) points on a circle, Utilitas Math. 38 (1990), 277-284.
[7] A. Postnikov, V. Reiner and L. Williams: Faces of generalized permutohedra, Doc. Math. 13 (2008), 207-273. · Zbl 1167.05005
[8] C. Procesi: The toric variety associated to Weyl chambers; in Mots, 153-161, Lang. Raison. Calc., Hermès, Paris, 1990. · Zbl 1177.14090
[9] V. Pilaud and C. Stump: Brick polytopes of spherical subword complexes and generalized associahedra, Adv. Math. 276 (2015), 1-61. · Zbl 1405.05196
[10] R. Simion: A type-B associahedron, Adv. Appl. Math. 30 (2003), 2-25. · Zbl 1047.52006
[11] J. Stasheff: Homotopy associativity of H-spaces I, II., Trans. Amer. Math. Soc., 108 (1963), 293-312. · Zbl 0114.39402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.