Uniform well-posedness for a time-dependent Ginzburg-Landau model in superconductivity. (English) Zbl 1420.35393

Summary: We study the initial boundary value problem for a time-dependent Ginzburg-Landau model in superconductivity. First, we prove the uniform boundedness of strong solutions with respect to diffusion coefficient \(0 < \epsilon < 1\) in the case of Coulomb gauge. Our second result is the global existence and uniqueness of the weak solutions to the limit problem when \(\epsilon=0\).


35Q56 Ginzburg-Landau equations
35K55 Nonlinear parabolic equations
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: Euclid


[1] Z.M. Chen, C. Elliott and Q. Tang: Justification of a two-dimensional evolutionary Ginzburg-Landau superconductivity model, RAIRO Model Math. Anal. Numer. 32 (1998), 25-50. · Zbl 0905.35084
[2] Z.M. Chen, K.H. Hoffmann and J.Liang: On a nonstationary Ginzburg-Landau superconductivity model, Math. Meth. Appl. Sci. 16 (1993), 855-875. · Zbl 0817.35111
[3] Q. Du: Global existence and uniqueness of solutions of the time dependent Ginzburg-Landau model for superconductivity, Appl. Anal. 53 (1994), 1-17. · Zbl 0843.35019
[4] Q. Tang: On an evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux, Comm. PDE, 20 (1995), 1-36. · Zbl 0833.35132
[5] Q. Tang and S. Wang: Time dependent Ginzburg-Landau equations of superconductivity, Physica D, 88 (1995), 139-166. · Zbl 0900.35371
[6] J. Fan and S. Jiang: Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model for superconductivity, Appl. Math. Lett. 16 (2003), 435-440. · Zbl 1055.35109
[7] J. Fan and T. Ozawa: Uniqueness of weak solutions to the Ginzburg-Landau model for superconductivity, Z. Angew. Math. Phys. 63 (2012), 453-459. · Zbl 1247.35164
[8] J. Fan, H. Gao and B. Guo: Uniqueness of weak solutions to the 3D Ginzburg-Landau superconductivity model, Int. Math. Res. Not. IMRN (2015), 1239-1246. · Zbl 1317.35248
[9] J. Fan and H. Gao: Uniqueness of weak solutions in critical spaces of the 3-D time-dependent Ginzburg-Landau equations for superconductivity, Math. Nachr. 283 (2010), 1134-1143. · Zbl 1198.35008
[10] R.A. Adams and J.J.F. Fournier: Sobolev Spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic Press, Amsterdam, 2003. · Zbl 1098.46001
[11] A. Lunardi: Interpolation Theory, 2nd ed., Lecture Notes, Scuola Normale Superiore di Pisa (New Series), Edizioni della Normale, Pisa, 2009. · Zbl 1171.41001
[12] H. Beirão da Veiga and F. Crispo: Sharp inviscid limit results under Navier type boundary conditions: An \(L^p\) theory, J. Math. Fluid Mech. 12, (2010), 307-411. · Zbl 1261.35099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.