zbMATH — the first resource for mathematics

reactingfoam-SCI: an open source CFD platform for reacting flow simulation. (English) Zbl 07083201
Summary: Computational fluid dynamics (CFD) has become a major tool in understanding and predicting the behavior of reacting flows, which intrinsically involve the complex interaction of chemical kinetics and fluid mechanics. Among various open source CFD packages, the widely used C++ finite volume simulation toolbox OpenFOAM has many advantages such as its object-orientated framework, convenience to add multiphysics module and free availability, however, many weaknesses have been identified regarding its application in chemically reacting flows, especially incomplete splitting schemes, poor ordinary differential equation (ODE) solvers for stiff chemistry and the oversimplified mixture transport models, etc. In this work, an OpenFOAM 5.0 based reacting flow CFD platform reactingFoam-SCI is constructed by further implementing a few state-of-the-art advances in computational combustion, including a robust midpoint operator splitting scheme, and an accurate stable stiff ODE solver with error control. An interface between OpenFOAM 5.0 and the open source package Cantera 2.3.0 is also developed, to allow the evaluation of multicomponent and mixture-averaged transport properties and the call of other Cantera subroutines. The effectiveness and robustness of this new platform have been systematically validated against the analytical solutions and literature reported direct numerical calculation results, including those from a diffusion-convection problem, homogeneous ignition delay, shock tube, one-dimensional spherical flame initiation and propagation, two-dimensional unsteady premixed flame subject to hydrodynamic and diffusional-thermal instabilities, one-dimensional non-premixed counterflow flame and two-dimensional non-premixed co-flow flame. The satisfactory agreement demonstrates the accuracy and robustness of the current platform.
76 Fluid mechanics
Full Text: DOI
[1] Zhao, P., Detailed kinetics in combustion simulation: manifestation, model reduction, and computational diagnostics, (2018), Springer
[2] Marchuk, G., On the theory of the splitting-up method, in: proceedings of the 2nd symposium on numerical solution of partial differential equations, SVNSPADE, 469-500, (1970)
[3] Schwer, A. D.; Lu, P.; Green, W. H.; Semiao, V., A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry, Combust Theory Modelling, 7, 2, 383-399, (2003)
[4] Singer, M. A.; Pope, S. B.; Najm, H. N., Operator-splitting with ISAT to model reacting flow with detailed chemistry, Combust Theory Modelling, 10, 2, 199-217, (2006) · Zbl 1121.80333
[5] Ren, Z.; Pope, S. B., Second-order splitting schemes for a class of reactive systems, J Comput Phys, 227, 17, 8165-8176, (2008) · Zbl 1147.65056
[6] Wang, H.; Popov, P. P.; Pope, S. B., Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations, J Comput Phys, 229, 5, 1852-1878, (2010) · Zbl 1183.80101
[7] Duarte, Max; Massot, M.; Descombes, S.; Tenaud, C.; Dumont, T.; Louvet, V.; Laurent, F., New resolution strategy for multiscale reaction waves using time operator splitting, space adaptive multiresolution, and dedicated high order implicit/explicit time integrators, SIAM J Sci Comput, 34, 1, A76-A104, (2012) · Zbl 1243.65107
[8] Ren, Z.; Chao, X.; Lu, T.; Singer, M. A., Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations, J Comput Phys, 263, 19-36, (2014) · Zbl 1349.76881
[9] Strang, G., On the construction and comparison of difference schemes, SIAM J Numer Anal, 5, 506-517, (1968) · Zbl 0184.38503
[10] Marchuk, G., On the theory of the splitting-up method, Numer Solut Partial Diff Eq-II, 469-500, (1971)
[11] Speth, L.; Green, H.; MacNamara, S.; Strang, G., Balanced splitting and rebalanced splitting, SIAM J Numer Anal, 51, 3084-3105, (2013) · Zbl 1284.65121
[12] Chen, Z., Studies on the initiation, propagation, and extinction of premixed flames, (2009), Princeton University
[13] Cuoci, A.; Frassoldati, A.; Faravelli, T.; Ranzi, E., Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method, Energy Fuels, 27, 7730-7753, (2013)
[14] Lu, Z.; Zhou, H.; Li, S.; Ren, Z.; Lu, T.; Law, C. K., Analysis of operator splitting errors for near limit flame simulations, J Comput Phys, 335, 578-591, (2017)
[15] Chao, X.; Yang, G.; Ren, Z.; Lu, T., A sparse stiff chemistry solver based on dynamic adaptive integration for efficient combustion simulations, Combust Flame, 172, 183-193, (2016)
[16] Wu, H.; Ma, C.; Ihme, M., Efficient time stepping for reactive turbulent simulations with stiff chemistry, (AIAA Aerospace Sciences Meeting, (2018)), 1672
[17] Lu, T.; Law, C. K.; Yoo, S.; Chen, H., Dynamic stiffness removal for direct numerical simulations, Combust Flame, 156, 1542-1551, (2009)
[18] Zhao P, Lam SH, Toward computational singular perturbation without eigen-decomposition, Combust Flame, under review.
[19] Lam, S. H., Reduced chemistry-diffusion coupling, Combust Sci Technol, 179, 767-786, (2007)
[20] Lam, S. H., Using CSP to understand complex chemical kinetics, Combust Sci Technol, 89, 375-404, (1993)
[21] Lam, S. H.; Goussis, D. A., The CSP method for simplifying kinetics, Int J Chem Kinet, 26, 461-486, (1994)
[22] Massias, A.; Diamantis, D.; Mastorakos, E.; Goussis, D. A., An algorithm for the construction of global reduced mechanisms with CSP data, Combust. Flame, 117, 685-708, (1999) · Zbl 0939.80506
[23] Massias, A.; Diamantis, D.; Mastorakos, E.; Goussis, D. A., Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data, Combust Theory Modelling, 3, 233-257, (1999) · Zbl 0939.80506
[24] Maas, U.; Pope, S. B., Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust Flame, 88, 239-264, (1992)
[25] Lu, T.; Law, C. K., A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry, Combust Flame, 154, 761-774, (2008)
[26] Cohen, S. D.; Hindmarsh, A. C.; Dubois, P. F., CVODE, a stiff/nonstiff ODE solver in C, Comput Phys, 10, 138-143, (1996)
[27] Imren, A.; Haworth, D. C., On the merits of extrapolation-based stiff ODE solvers for combustion CFD, Combust Flame, 174, 1-15, (2016)
[28] Bird, R.; Setwart, W.; Lightfoot, E., Transport phenomena, (1960)
[29] Law, C. K., Combustion physics, (2010), Cambridge University Press
[30] Xin, Y.; Liang, W.; Liu, W.; Lu, T.; Law, C. K., A reduced multicomponent diffusion model, Combust Flame, 162, 68-74, (2015)
[31] Ambikasaran, S.; Narayanaswamy, K., An accurate, fast, mathematically robust, universal, non-iterative algorithm for computing multi-component diffusion velocities, Proc Combust Inst, 36, 507-515, (2017)
[32] Burali, N.; Lapinte, S.; Bobbitt, B.; Blanquart, G.; Xuan, Y., Assessment of the constant non-unity Lewis number assumption in chemically-reacting flows, Combust Theory Model, 20, 632-657, (2016)
[33] Goodwin, D.; Moffat, H. K.; Speth, R. L., Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, version 2.3.0, (2017), doi:10.5281/zenodo.170284http://www.cantera.org
[34] Weller, H. G.; Tabor, G.; Jasak, H.; Fureby, C., A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput Phys, 12, 620-631, (1998)
[35] Ottino, G. M.; Fancello, A.; Falcon, M.; Bastiaans, R. J.; Goey, L. P., Combustion modeling including heat loss using flamelet generated manifolds: a validation study in OpenFOAM, Flow, Turbulence Combust, 96, 3, 773-800, (2016)
[36] Weinzierl, J.; Kolb, M.; Ahrens, D.; Hirsch, C.; Sattelmayer, T., Large-eddy simulation of a reacting jet in cross flow with NOx prediction, J Eng Gas Turbines Power, 139, Article 031502 pp., (2017)
[37] Huang, Z. W.; He, G. Q.; Qin, F.; Wei, X. G., Large eddy simulation of flame structure and combustion mode in a hydrogen fueled supersonic combustor, Int J Hydrogen Energy, 40, 9815-9824, (2015)
[38] Zhong, S.; Zhang, F.; Peng, Z.; Bai, F.; Du, Q., Roles of CO2 and H2O in premixed turbulent oxy-fuel combustion, Fuel, 234, 1044-1054, (2018)
[39] Lysenko, D. A.; Ertesvåg, I. S., Reynolds-Averaged, Scale-Adaptive and Large-Eddy Simulations of Premixed Bluff-Body, Combustion Using the Eddy Dissipation Concept, Flow Turbulence Combust, 100, 721-768, (2018)
[40] Han, X.; Yang, J.; Mao, J., LES investigation of two frequency effects on acoustically forced premixed flame, Fuel, 185, 449-459, (2016)
[41] Mével, R.; Niedzielska, U.; Melguizo-Gavilanes, J.; Coronel, S.; Shepherd, JE, Chemical kinetics of n-hexane-air atmospheres in the boundary layer of a moving hot sphere, Combust Sci Technol, 188, 2267-2283, (2016)
[42] Shekhar, R.; Boeck, L. R.; Uber, C.; Gerlach, U., Ignition of a hydrogen – air mixture by low voltage electrical contact arcs, Combust Flame, 186, 236-246, (2017)
[43] Tong, Y.; Liu, X.; Wang, Z.; Richter, M.; Klingmann, J., Experimental and numerical study on bluff-body and swirl stabilized diffusion flames, Fuel, 217, 352-364, (2018)
[44] Zhang, F.; Zirwes, T.; Habisreuther, P.; Bockhorn, H., Effect of unsteady stretching on the flame local dynamics, Combust Flame, 175, 170-179, (2017)
[45] Cicoria, D.; Chan, C., Effects of turbulence and strain rate on hydrogen-enriched high Ka number lean premixed methane flames, Fuel, 211, 754-766, (2018)
[46] Curtiss, C. F.; Hirschfelder, J. O., Transport properties of multicomponent gas mixtures, J Chem Phys, 17, 550-555, (1949) · Zbl 0039.42806
[47] Sportisse, B., An analysis of operator splitting techniques in the stiff case, J Comput Phys, 161, 140-168, (2000) · Zbl 0953.65062
[48] Cloney, C. T.; Ripley, R. C.; Pegg, M. J.; Amyotte, P. R., Laminar burning velocity and structure of coal dust flames using a unity Lewis number CFD model, Combust Flame, 190, 87-102, (2018)
[49] Bowman, C. T.; Frenklach, M.; Gardiner, W. R.; Smith, G., The GRI 3.0 chemical kinetic mechanism, (1999), University of California
[50] Seiser, H.; Pitsch, H.; Seshadri, K.; Pitz, W. J.; Curran, H. J., Extinction and autoignition of n-Heptane in Counterflow configuration, Proc Combust Inst, 28, 2029-2037, (2000)
[51] Grcar, J., The TWOPNT program for boundary value problems, (Sandia National Laboratories Report SAND91-8230, (1992))
[52] Bongers, H.; De Goey, L. P.H., The effect of simplified transport modeling on the burning velocity of laminar premixed flames, Combust Sci Tech, 175, 1915-1928, (2003)
[53] Correa, S. M., Models for high-intensity turbulent combustion, Comput Syst Eng, 5, 2, 135-145, (1994)
[54] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J Comput Phys, 27, 1-31, (1978) · Zbl 0387.76063
[55] Martí, J. M.; Müller, E., The analytical solution of the Riemann problem in relativistic hydrodynamics, J Fluid Mech E1, 317-333, (1994) · Zbl 0806.76098
[56] Chen, Z.; Burke, M.; Ju, Y., On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc Combust Inst, 33, 1219-1226, (2011)
[57] He, L., Critical conditions for spherical flame initiation in mixtures with high Lewis numbers, Combust Theory Modelling, 4, 159-172, (2000) · Zbl 0955.76097
[58] Li, J.; Zhao, Z.; Kazakov, A.; Dryer, F. L., An updated comprehensive kinetic model of hydrogen combustion, Int J Chem Kinet, 36, 566-575, (2004)
[59] Taylor, S. C., Burning velocity and the influence of flame stretch, (1991), University of Leeds
[60] Hong, D. F.; Davidson, R. K.; Hanson, An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements, Combust Flame, 158, 633-644, (2011)
[61] Pitsch, H., FlameMaster, A C++ computer program for 0D combustion and 1D laminar flame calculations, 81, (1998)
[62] Lutz, A.; Kee, R.; Grcar, J., OPPDIF: a fortran program for computing opposed-flow diffusion flames, (1994), Sandia National Laboratories
[63] Evans, M. J.; Medwell, P. R.; Tian, Z. F.; Ye, J.; Frassoldati, A.; Cuoci, A., Effects of oxidant stream composition on non-premixed laminar flames with heated and diluted coflows, Combust Flame, 178, 297-310, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.