×

zbMATH — the first resource for mathematics

Debris flows with pore pressure and intergranular friction on rugged topography. (English) Zbl 07083203
Summary: The dynamic behavior of debris flows features the interplay of a non-hydrostatic pore-fluid pressure with the non-linear deformational behavior of the granular skeleton and the internal contact stress between grains. This complex physical background is considered by amending the classical depth-integrated modeling for granular-fluid flows by two additional fields, an extra pore-fluid pressure and a hypoplastic intergranular stress. A scaled and depth-integrated model is developed and transferred into a system of terrain-following coordinates, enabling the application on rugged topography. With this model, numerical investigations are carried out, using a non-oscillatory, shock-capturing central-upwind scheme. Parameter studies show the general impact of the additional fields, completed by comparison to the experimental results of a dam break scenario. Furthermore, application to the landslide event at the village of Hsiaolin in Taiwan, 2009, show the capability of the model to cope with large scale scenarios. The results show that the model and its implementation provide insights in the flow dynamics and the possibility to application on complex topography, considering an enhanced approach to the physics of debris flows.
MSC:
76 Fluid mechanics
Software:
D-Claw
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Larsen, M. C.; Wieczorek, G. F.; Eaton, L.; Torres-Sierra, H., Natural hazards on alluvial fans: the debris flow and flash flood disaster of december 1999, Vargas state, Venezuela, Proceedings of the sixth caribbean Islands water resources congress, Puerto Rico, 965, 1-7, (2001)
[2] Wieczorek, G.; Larsen, M.; Eaton, L.; Morgan, B.; Blair, J., Debris-flow and flooding hazards associated with the december 1999 storm in coastal Venezuela and strategies for mitigation, Tech. Rep., (2001)
[3] Dong, J.-J.; Li, Y.-S.; Kuo, C.-Y.; Sung, R.-T.; Li, M.-H.; Lee, C.-T., The formation and breach of a short-lived landslide dam at Hsiaolin village, Taiwan – part I: post-event reconstruction of dam geometry, Eng Geol, 123, 1-2, 40-59, (2011)
[4] Tai, Y.-C.; Heß, J.; Wang, Y., Modeling two-phase debris flows with grain- fluid separation over rugged topography: application to the 2009 Hsiaolin event, Taiwan, J Geophys Res, 124, 2, 305-333, (2018)
[5] Savage, S. B.; Hutter, K., The motion of a finite mass of granular material down a rough incline, J Fluid Mech, 199, 177-215, (1989) · Zbl 0659.76044
[6] Pitman, E. B.; Le, L., A two-fluid model for avalanche and debris flows, Philos Trans R Soc A, 363, 1832, 1573-1601, (2005) · Zbl 1152.86302
[7] Savage, S. B.; Hutter, K., The dynamics of avalanches of granular materials from initiation to runout. Part I: analysis, Acta Mech, 86, 201-223, (1991) · Zbl 0732.73053
[8] Gray, J.; Wieland, M.; Hutter, K., Gravity-driven free surface flow of granular avalanches over complex basal topography, Proceedings of the royal society of London A: mathematical, physical and engineering sciences, 455, 1841-1874, (1999) · Zbl 0951.76091
[9] Pudasaini, S. P., A general two-phase debris flow model, J Geophys Res, 117, (2012)
[10] Meng, X.; Wang, Y., Modelling and numerical simulation of two-phase debris flows, Acta Geotech, 11, 5, 1027-1045, (2016)
[11] Hui, W.; Li, P.; Li, Z., A unified coordinate system for solving the two-dimensional Euler equations, J Comput Phys, 153, 2, 596-637, (1999) · Zbl 0969.76061
[12] Hui, W. H., A unified coordinates approach to computational fluid dynamics, J Comput Appl Math, 163, 1, 15-28, (2004) · Zbl 1107.76370
[13] Bouchut, F.; Westdickenberg, M., Gravity driven shallow water models for arbitrary topography, Commun Math Sci, 2, 3, 359-389, (2004) · Zbl 1084.76012
[14] Luca, I.; Tai, Y.-C.; Kuo, C.-Y., Shallow geophysical mass flows down arbitrary topography, (2016), Springer
[15] Savage, S.; Iverson, R. M., Surge dynamics coupled to pore-pressure evolution in debris flows, 1, 503-514, (2003), Millpress
[16] George, D. L.; Iverson, R. M., A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure, Italian J Eng GeolEnviron, 10, (2011)
[17] Iverson, R. M.; George, D. L., A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis, Proceedings of the royal society A: mathematical, physical and engineering sciences, 470, (2014), The Royal Society · Zbl 1371.86008
[18] Kolymbas, D., A rate-dependent constitutive equation for soils, Mech Res Commun, 4, 6, 367-372, (1977)
[19] Gray, J.; Thornton, A., A theory for particle size segregation in shallow granular free-surface flows, Proceedings of the royal society of London A: mathematical, physical and engineering sciences, 461, 1447-1473, (2005), The Royal Society · Zbl 1145.76461
[20] Tai, Y.-C.; Lin, Y.-C., A focused view of the behavior of granular flows down a confined inclined chute into the horizontal run-out zone, Phys Fluids, 20, 12, 123302, (2008) · Zbl 1182.76741
[21] Heß, J.; Wang, Y.; Hutter, K., Thermodynamically consistent modeling of granular-fluid mixtures incorporating pore pressure evolution and hypoplastic behavior, Continuum Mech Thermodyn, 29, 1, 311-343, (2017) · Zbl 1365.76327
[22] Heß, J.; Wang, Y., On the role of pore-fluid pressure evolution and hypoplasticity in debris flows, Eur J Mech-B/Fluids, 74, 363-379, (2019)
[23] Müller, I., A thermodynamic theory of mixtures of fluids, Arch Ration Mech Anal, 28, 1, 1-39, (1968) · Zbl 0157.56703
[24] Liu, I.-S., Method of lagrange multipliers for exploitation of the entropy principle, Arch Ration Mech Anal, 46, 2, 131-148, (1972) · Zbl 0252.76003
[25] Müller, I.; Liu, I.-S., Thermodynamics of mixtures of fluids, (Truesdell, C., Rational thermodynamics, (1984), Springer)
[26] Tai, Y.; Kuo, C., Modelling shallow debris flows of the coulomb-mixture type over temporally varying topography, Nat Hazards Earth Syst Sci, 12, 2, 269-280, (2012)
[27] Terzaghi, K.v., The shearing resistance of saturated soils and the angle between the planes of shear, Proceedings of the 1st international conference on soil mechanics and foundation engineering, 1, 54-56, (1936)
[28] de Boer, R.; Ehlers, W., The development of the concept of effective stresses, Acta Mech, 83, 1, 77-92, (1990) · Zbl 0724.73195
[29] Iverson, R. M.; Denlinger, R. P., Flow of variably fluidized granular masses across three-dimensional terrain 1. coulomb mixture theory, J Geophys Res, 106, 537-552, (2001)
[30] Goren, L.; Aharonov, E.; Sparks, D.; Toussaint, R., Pore pressure evolution in deforming granular material: a general formulation and the infinitely stiff approximation, J Geophys Res, 115, B9, (2010)
[31] Kolymbas, D., An outline of hypoplasticity, Arch Appl Mech, 61, 3, 143-151, (1991) · Zbl 0734.73023
[32] Bauer, E., Calibration of a comprehensive hypoplastic model for granular materials., Solid Found, 36, 1, 13-26, (1996)
[33] Wu, W.; Bauer, E.; Kolymbas, D., Hypoplastic constitutive model with critical state for granular materials, Mech Mater, 23, 1, 45-69, (1996)
[34] Arnold, M.; Herle, I., Hypoplastic description of the frictional behaviour of contacts, Numerical methods in geotechnical engineering, 101-106, (2006)
[35] Niemunis, A., Hypoplasticity vs. elastoplasticity, selected topics, Modern ApproachPlastic, 277-307, (1993)
[36] Herle, I.; Gudehus, G., Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies, Mech Cohesive-Frict Mater, 4, 5, 461-486, (1999)
[37] Teufel, A., Simple flow configurations in hypoplastic abrasive materials, (2001), Technische Universität Darmstadt
[38] Fang, C.; Wang, Y.; Hutter, K., Shearing flows of a dry granular material-hypoplastic constitutive theory and numerical simulations, Int J Numer Anal Methods Geomech, 30, 14, 1409-1437, (2006) · Zbl 1196.74027
[39] Gudehus, G., A comprehensive constitutive equation for granular materials, SoilsFound, 36, 1, 1-12, (1996)
[40] Mašín, D., A hypoplastic constitutive model for clays, Int J Numer Anal Methods Geomech, 29, 4, 311-336, (2005) · Zbl 1122.74457
[41] Wang, Y.; Hutter, K., Comparisons of numerical methods with respect to convectively dominated problems, Int J Numer Methods Fluids, 37, 6, 721-745, (2001) · Zbl 0999.76100
[42] Wang, Y.; Hutter, K.; Pudasaini, S. P., The Savage-Hutter theory: a system of partial differential equations for avalanche flows of snow, debris, and mud, ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 84, 8, 507-527, (2004) · Zbl 1149.74323
[43] Kurganov, A.; Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection – diffusion equations, J Comput Phys, 160, 1, 241-282, (2000) · Zbl 0987.65085
[44] Kurganov, A.; Miller, J., Central-upwind scheme for Savage-Hutter type model of submarine landslides and generated tsunami waves, Comput Methods Appl Math, 14, 2, 177-201, (2014) · Zbl 1302.76115
[45] Meng, X.; Wang, Y.; Wang, C.; Fischer, J.-T., Modeling of unsaturated granular flows by a two-layer approach, Acta Geotech, 12, 3, 677-701, (2017)
[46] Hutter, K.; Koch, T.; Plüss, C.; Savage, S., The dynamics of avalanches of granular materials from initiation to runout. Part II. experiments, Acta Mech, 109, 1-4, 127-165, (1995)
[47] O’Brien, J. S.; Julien, P. Y., Laboratory analysis of mudflow properties, J Hydraul Eng, 114, 8, 877-887, (1988)
[48] Balmforth, N.; Kerswell, R., Granular collapse in two dimensions, J Fluid Mech, 538, 399-428, (2005) · Zbl 1108.76303
[49] Ionescu, I. R.; Mangeney, A.; Bouchut, F.; Roche, O., Viscoplastic modeling of granular column collapse with pressure-dependent rheology, J Nonnewton Fluid Mech, 219, 1-18, (2015)
[50] Wang, C.; Wang, Y.; Peng, C.; Meng, X., Dilatancy and compaction effects on the submerged granular column collapse, Phys Fluids, 29, 10, 103307, (2017)
[51] Pailha, M.; Pouliquen, O., A two-phase flow description of the initiation of underwater granular avalanches, J Fluid Mech, 633, 115-135, (2009) · Zbl 1183.76906
[52] Kuo, C.; Tai, Y.; Chen, C.; Chang, K.; Siau, A.; Dong, J., The landslide stage of the Hsiaolin catastrophe: simulation and validation, J Geophys Res, 116, F4, (2011)
[53] Lo, C.-M.; Lin, M.-L.; Tang, C.-L.; Hu, J.-C., A kinematic model of the hsiaolin landslide calibrated to the morphology of the landslide deposit, Eng Geol, 123, 1-2, 22-39, (2011)
[54] Wu, C.-H.; Chen, S.-C.; Feng, Z.-Y., Formation, failure, and consequences of the Xiaolin landslide dam, triggered by extreme rainfall from typhoon Morakot, Taiwan, Landslides, 11, 3, 357-367, (2014)
[55] Gray, J.; Edwards, A., A depth-averaged μ(i)-rheology for shallow granular free-surface flows, J Fluid Mech, 755, 503, (2014) · Zbl 1330.76137
[56] Edwards, A.; Gray, J., Erosion – deposition waves in shallow granular free-surface flows, J Fluid Mech, 762, 35-67, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.