Factorized sectorial relations, their maximal-sectorial extensions, and form sums. (English) Zbl 1423.47011

Summary: In this paper, we consider sectorial operators, or more generally, sectorial relations and their maximal-sectorial extensions in a Hilbert space \(H\). Our particular interest is in sectorial relations \(S\), which can be expressed in the factorized form \[ S=T^*(I+iB)T\quad\text{or}\quad S=T(I+iB)T^*, \] where \(B\) is a bounded self-adjoint operator in a Hilbert space \(\mathfrak{K}\) and \(T:\mathfrak{H}\rightarrow\mathfrak{K}\) (or \(T:\mathfrak{K}\rightarrow\mathfrak{H}\), respectively) is a linear operator or a linear relation which is not assumed to be closed. Using the specific factorized form of \(S\), a description of all the maximal-sectorial extensions of \(S\) is given, along with a straightforward construction of the extreme extensions \(S_F\), the Friedrichs extension, and \(S_K\), the Kreĭn extension of \(S\), which uses the above factorized form of \(S\). As an application of this construction, we also treat the form sum of maximal-sectorial extensions of two sectorial relations.


47B44 Linear accretive operators, dissipative operators, etc.
47A06 Linear relations (multivalued linear operators)
47A07 Forms (bilinear, sesquilinear, multilinear)
47B65 Positive linear operators and order-bounded operators
Full Text: DOI arXiv Euclid


[1] T. Ando and K. Nishio, Positive selfadjoint extensions of positive symmetric operators, Tohoku Math. J. (2) 22 (1970), 65-75. · Zbl 0192.47703
[2] Y. M. Arlinskiĭ, Maximal sectorial extensions and closed form associated with them, Ukrainian Math. J. 48 (1996), no. 6, 809-827.
[3] Y. M. Arlinskiĭ, Extremal extensions of sectorial linear relations, Mat. Stud. 7 (1997), no. 1, 81-96. · Zbl 0974.47504
[4] Y. M. Arlinskiĭ, “Boundary triplets and maximal accretive extensions of sectorial operators” in Operator Methods for Boundary Value Problems, London Math. Soc. Lecture Note Ser. 404, Cambridge Univ. Press, Cambridge, 2012, 35-72.
[5] Y. M. Arlinskiĭ, S. Hassi, Z. Sebestyén, and H. S. V. de Snoo, “On the class of extremal extensions of a nonnegative operator” in Recent Advances in Operator Theory and Related Topics (Szeged, 1999), Birkhäuser, Basel, 2001, 41-81.
[6] E. A. Coddington, Extension Theory of Formally Normal and Symmetric Subspaces, Mem. Amer. Math. Soc. 134, Amer. Math. Soc., Providence, 1973. · Zbl 0265.47023
[7] E. A. Coddington and H. S. V. de Snoo, Positive selfadjoint extensions of positive symmetric subspaces, Math. Z. 159 (1978), 203-214. · Zbl 0358.47015
[8] R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. · Zbl 0146.12503
[9] B. Farkas and M. Matolcsi, Commutation properties of the form sum of positive symmetric operators, Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 777-790. · Zbl 1003.47015
[10] S. Hassi, “On the Friedrichs and the Kreĭn-von Neumann extension of nonnegative relations” in Contributions to Management Science, Mathematics and Modelling, Universitas Wasaensis, Vaasa, 2004, 37-54. · Zbl 1096.47004
[11] S. Hassi and H. S. V. de Snoo, A class of sectorial relations and the associated closed forms, in preparation. · Zbl 1363.47006
[12] S. Hassi, M. M. Malamud, and H. S. V. de Snoo, On Kreĭn’s extension theory of nonnegative operators, Math. Nachr. 274/275 (2004), 40-73. · Zbl 1076.47008
[13] S. Hassi, A. Sandovici, H. S. V. de Snoo, and H. Winkler, Form sums of nonnegative selfadjoint operators, Acta Math. Hungar. 111 (2006), no. 1-2, 81-105. · Zbl 1122.47011
[14] S. Hassi, A. Sandovici, H. S. V. de Snoo, and H. Winkler, Extremal extensions for the sum of nonnegative selfadjoint relations, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3193-3204. · Zbl 1129.47015
[15] S. Hassi, A. Sandovici, H. S. V. de Snoo, and H. Winkler, A general factorization approach to the extension theory of nonnegative operators and relations, J. Operator Theory 58 (2007), no. 2, 351-386. · Zbl 1164.47003
[16] S. Hassi, A. Sandovici, H. S. V. de Snoo, and H. Winkler, Extremal maximal sectorial extensions of sectorial relations, Indag. Math. (N.S.) 28 (2017), no. 5, 1019 -1055. · Zbl 1481.47001
[17] S. Hassi, Z. Sebestyén, and H. S. V. de Snoo, Lebesgue type decompositions for linear relations and Ando’s uniqueness criterion, Acta Sci. Math. (Szeged) 84 (2018), no. 3-4, 465-507. · Zbl 1424.47007
[18] T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss. 132, Springer, Berlin, 1980. · Zbl 0435.47001
[19] M. G. Kreĭn, Theory of selfadjoint extensions of semibounded operators and its applications I, II, Mat. Sb. 20, 21 (1947), 431-495, 365-404.
[20] V. Prokaj and Z. Sebestyén, On Friedrichs extensions of operators, Acta Sci. Math. (Szeged) 62 (1996), no. 1-2, 243-246. · Zbl 0863.47010
[21] F. S. Rofe-Beketov, The numerical range of a linear relation and maximum relations, Funktsional. Anal. i Prilozhen 44 (1985), 103-112 (Russian), English translation in J. Soviet Math. 48 (1990), no. 3, 329-336.
[22] Z. Sebestyén and E. Sikolya, On Kreĭn-von Neumann and Friedrichs extensions, Acta Sci. Math. (Szeged) 69 (2003), no. 1-2, 323-336. · Zbl 1050.47011
[23] Z. Sebestyén and J. Stochel, Restrictions of positive self-adjoint operators, Acta Sci. Math. (Szeged) 55 (1991), no. 1-2, 149-154. · Zbl 0897.47015
[24] Z. Sebestyén and Z. Tarcsay, \(T^{*}T\) always has a positive selfadjoint extension, Acta Math. Hungar. 135 (2012), 116-129. · Zbl 1258.47015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.