×

zbMATH — the first resource for mathematics

On multiplicative dependence of values of rational functions and a generalization of the Northcott theorem. (English) Zbl 1442.11142
In this paper the authors study multiplicative dependence of values of polynomials or rational functions over a number field. Let \(K\) be a number field and let \(\phi= (\phi_1,\dots,\phi_s) \in K(X)^s\) whose components cannot multiplicatively generate a power of a linear fractional function. It is shown that then there are only finitely many elements \(\alpha\) in the maximal abelian extension of \(K\) such that \(\phi(\alpha)\) is a multiplicatively dependent point. The authors also obtain a generalization of the Northcott theorem replacing the finiteness of preperiodic points from a given number field by the finiteness of algebraic integers having two multiplicatively dependent elements in their orbits. Let \(\phi(X)\) be of degree \(d \geq 2\) and not of the form \(\beta X^{\pm d}\) with \(\beta \in K^*\), and let \(\alpha \in \overline{\mathbb Q} \setminus U\) (where \(U\) is the set of all roots of unity) be nonpreperiodic for \(\phi\). Then, there are only finitely many positive integers \(n\) such that \(\alpha\) and \(\phi^{(n)}(\alpha)\) (where \(\phi^{(n)}\) is the \(n\)th iteration of \(\phi\)) are multiplicatively dependent.

MSC:
11R18 Cyclotomic extensions
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] F. Amoroso, S. David, and U. Zannier, On fields with property (B), Proc. Amer. Math. Soc. 142 (2014), 1893-1910.
[2] F. Amoroso and U. Zannier, A uniform relative Dobrowolski’s lower bound over Abelian extensions, Bull. Lond. Math. Soc. 42 (2010), 489-498. · Zbl 1205.11079
[3] A. Bérczes, J.-H. Evertse, and K. Györy, Effective results for hyper- and superelliptic equations over number fields, Publ. Math. Debrecen 82 (2013), 727-756.
[4] E. Bombieri and W. Gubler, Heights in Diophantine geometry, Cambridge Univ. Press, Cambridge, 2006. · Zbl 1115.11034
[5] E. Bombieri, D. Masser, and U. Zannier, Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Res. Notes 20 (1999), 1119-1140. · Zbl 0938.11031
[6] E. Chen, Avoiding algebraic integers of bounded house in orbits of rational functions over cyclotomic closures, Proc. Amer. Math. Soc. 146 (2018), 4189-4198. · Zbl 1441.11273
[7] A. Dubickas and M. Sha, Multiplicative dependence of the translations of algebraic numbers, Rev. Mat. Iberoam. 34 (2018), 1789-1808. · Zbl 1423.11166
[8] R. Dvornicich and U. Zannier, Cyclotomic Diophantine problems (Hilbert irreducibility and invariant sets for polynomial maps), Duke Math. J. 139 (2007), 527-554. · Zbl 1127.11040
[9] G. Faltings, Endlichkeitssätze fur abelsche Varietäten über Zahlkorpern, Invent. Math. 73 (1983), 349-366. · Zbl 0588.14026
[10] C. Fuchs and U. Zannier, Composite rational functions expressible with few terms, J. Eur. Math. Soc. 14 (2012), 175-208. · Zbl 1244.12001
[11] A. Galateau, Small height in fields generated by singular moduli, Proc. Amer. Math. Soc. 144 (2016), 2771-2786. · Zbl 1383.11088
[12] S. Gao, Elements of provable high orders in finite fields, Proc. Amer. Math. Soc. 127 (1999), 1615-1623. · Zbl 0923.11166
[13] R. Grizzard, Relative Bogomolov extensions, Acta Arith. 170 (2015), 1-13. · Zbl 1370.11070
[14] P. Habegger, Small height and infinite nonabelian extensions, Duke Math. J. 162 (2013), 2027-2076. · Zbl 1282.11074
[15] M. Hindry and J. H. Silverman, Diophantine geometry, Grad. Texts in Math., 201, Springer, New York, 2000. · Zbl 0948.11023
[16] J. Kollár, K. E. Smith, and A. Corti, Rational and nearly rational varieties, Cambridge Univ. Press, Cambridge, 2004.
[17] H. Krieger, A. Levin, Z. Scherr, T. Tucker, Y. Yasufuku, and M. E. Zieve, Uniform boundedness of \(S\)-units in arithmetic dynamics, Pacific J. Math. 274 (2015), 97-106. · Zbl 1403.37102
[18] M. Laurent, Equations diophantiennes exponentielles, Invent. Math. 78 (1984), 299-327. · Zbl 0554.10009
[19] J. H. Loxton, On the maximum modulus of cyclotomic integers, Acta Arith. 22 (1972), 69-85. · Zbl 0217.04203
[20] J. H. Loxton and A. J. van der Poorten, Multiplicative dependence in number fields, Acta Arith. 42 (1983), 291-302.
[21] A. Ostafe, On roots of unity in orbits of rational functions, Proc. Amer. Math. Soc. 145 (2017), 1927-1936. · Zbl 1360.11111
[22] A. Ostafe, M. Sha, I. E. Shparlinski, and U. Zannier, On Abelian multiplicatively dependent points on a curve in a torus, Q. J. Math. 69 (2018), 391-401. · Zbl 1440.11101
[23] A. Ostafe and I. E. Shparlinski, Orbits of algebraic dynamical systems in subgroups and subfields (C. Elsholtz, P. Grabner eds.), Number theory—Diophantine problems, uniform distribution and applications, pp. 347-368, Springer, 2017. · Zbl 1393.37113
[24] P. Sarnak and S. Adams, Betti numbers of congruence groups, Israel J. Math. 88 (1994), 31-72, with an appendix by Z. Rudnick. · Zbl 0843.11027
[25] A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385-399, Addendum, ibid., 26, 1973, 329-331. · Zbl 0275.12004
[26] J. H. Silverman, The arithmetic of dynamical systems, Springer, New York, 2007. · Zbl 1130.37001
[27] A. J. van der Poorten and J. H. Loxton, Multiplicative relations in number fields, Bull. Aust. Math. Soc. 16 (1977), 83-98. · Zbl 0335.10023
[28] L. C. Washington, Introduction to cyclotomic fields, Grad. Texts in Math., 83, Springer, New York, 1982. · Zbl 0484.12001
[29] M. Young, On the multiplicative independence of rational function iterates, preprint, 2017, https://arxiv.org/abs/1708.00944.
[30] U. Zannier, On the number of terms of a composite polynomial, Acta Arith. 127 (2007), 157-167. · Zbl 1161.11003
[31] U. Zannier, Lecture notes on Diophantine analysis, Publ. Scuola Normale Superiore, Pisa, 2009. · Zbl 1186.11001
[32] U. Zannier, Some problems of unlikely intersections in arithmetic and geometry, Ann. of Math. Stud., 181, Princeton Univ. Press, Princeton, NJ, 2012. · Zbl 1246.14003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.