zbMATH — the first resource for mathematics

Inflation as an information bottleneck: a strategy for identifying universality classes and making robust predictions. (English) Zbl 1416.83152
Summary: In this work we propose a statistical approach to handling sources of theoretical uncertainty in string theory models of inflation. By viewing a model of inflation as a probabilistic graph, we show that there is an inevitable information bottleneck between the ultraviolet input of the theory and observables, as a simple consequence of the data processing theorem. This information bottleneck can result in strong hierarchies in the sensitivity of observables to the parameters of the underlying model and hence universal predictions with respect to at least some microphysical considerations. We also find other intriguing behaviour, such as sharp transitions in the predictions when certain hyperparameters cross a critical value. We develop a robust numerical approach to studying these behaviours by adapting methods often seen in the context of machine learning. We first test our approach by applying it to well known examples of universality, sharp transitions, and concentration phenomena in random matrix theory. We then apply the method to inflation with axion monodromy. We find universality with respect to a number of model parameters and that consistency with observational constraints implies that with very high probability certain perturbative corrections are non-negligible.
83F05 Cosmology
85A40 Cosmology
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
83E30 String and superstring theories in gravitational theory
62P35 Applications of statistics to physics
62M20 Inference from stochastic processes and prediction
62G35 Nonparametric robustness
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
GitHub; GPy; ITE; npeet; Scikit
Full Text: DOI arXiv
[1] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev.D 23 (1981) 347 [INSPIRE].
[2] A. D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett.B 108 (1982) 389.
[3] Albrecht, A.; Steinhardt, PJ, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett., 48, 1220, (1982)
[4] Baumann, D.; Dymarsky, A.; Klebanov, IR; McAllister, L., Towards an explicit model of D-brane inflation, JCAP, 01, 024, (2008)
[5] D. Baumann et al., \(D\)3-brane potentials from fluxes in AdS/CFT, JHEP06 (2010) 072 [arXiv:1001.5028] [INSPIRE].
[6] Gandhi, S.; McAllister, L.; Sjors, S., A toolkit for perturbing flux compactifications, JHEP, 12, 053, (2011) · Zbl 1306.81154
[7] Agarwal, N.; Bean, R.; McAllister, L.; Xu, G., Universality in D-brane Inflation, JCAP, 09, 002, (2011)
[8] P. McFadden and K. Skenderis, The holographic universe, J. Phys. Conf. Ser.222 (2010) 012007 [arXiv:1001.2007] [INSPIRE].
[9] M. Dias, Cosmology at the boundary of de Sitter using the dS/QFT correspondence, Phys. Rev.D 84 (2011) 023512 [arXiv:1104.0625] [INSPIRE].
[10] Easther, R.; Flauger, R.; McFadden, P.; Skenderis, K., Constraining holographic inflation with WMAP, JCAP, 09, 030, (2011)
[11] Kiritsis, E., Asymptotic freedom, asymptotic flatness and cosmology, JCAP, 11, 011, (2013)
[12] Binetruy, P.; etal., Universality classes for models of inflation, JCAP, 04, 033, (2015)
[13] F. Denef, TASI lectures on complex structures, in the proceedingsof the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2010). String Theory and Its Applications: From meV to the Planck Scale, June 1-25, Boulder, Colorado U.S.A. (2010), arXiv:1104.0254 [INSPIRE].
[14] E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev.D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].
[15] L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev.D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].
[16] Kaloper, N.; Sorbo, L., A natural framework for chaotic inflation, Phys. Rev. Lett., 102, 121301, (2009)
[17] X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev.D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].
[18] Kaloper, N.; Lawrence, A.; Sorbo, L., An ignoble approach to large field inflation, JCAP, 03, 023, (2011)
[19] N. Kaloper and A. Lawrence, Natural chaotic inflation and ultraviolet sensitivity, Phys. Rev.D 90 (2014) 023506 [arXiv:1404.2912] [INSPIRE].
[20] E. Palti and T. Weigand, Towards large r from [p, q]-inflation, JHEP04 (2014) 155 [arXiv:1403.7507] [INSPIRE].
[21] Marchesano, F.; Shiu, G.; Uranga, AM, F-term axion monodromy inflation, JHEP, 09, 184, (2014)
[22] A. Hebecker, S.C. Kraus and L.T. Witkowski, \(D\)7-brane chaotic inflation, Phys. Lett.B 737 (2014) 16 [arXiv:1404.3711] [INSPIRE]. · Zbl 1317.83089
[23] McAllister, L.; Silverstein, E.; Westphal, A.; Wrase, T., The powers of monodromy, JHEP, 09, 123, (2014)
[24] Ibáñez, LE; Marchesano, F.; Valenzuela, I., Higgs-otic inflation and string theory, JHEP, 01, 128, (2015) · Zbl 1388.83668
[25] A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Tuning and backreaction in F-term axion monodromy inflation, Nucl. Phys.B 894 (2015) 456 [arXiv:1411.2032] [INSPIRE]. · Zbl 1328.83197
[26] A. Hebecker, J. Moritz, A. Westphal and L.T. Witkowski, Towards axion monodromy inflation with warped KK-modes, Phys. Lett.B 754 (2016) 328 [Erratum ibid.B 767 (2017) 493] [arXiv:1512.04463] [INSPIRE].
[27] Landete, A.; Marchesano, F.; Wieck, C., Challenges for D-brane large-field inflation with stabilizer fields, JHEP, 09, 119, (2016) · Zbl 1390.83411
[28] Bielleman, S.; etal., The DBI action, higher-derivative supergravity and flattening inflaton potentials, JHEP, 05, 095, (2016) · Zbl 1388.83745
[29] Bielleman, S.; etal., Higgs-otic inflation and moduli stabilization, JHEP, 02, 073, (2017) · Zbl 1377.83148
[30] Landete, A.; Marchesano, F.; Shiu, G.; Zoccarato, G., Flux flattening in axion monodromy inflation, JHEP, 06, 071, (2017) · Zbl 1380.83312
[31] Price, LC; Peiris, HV; Frazer, J.; Easther, R., Designing and testing inflationary models with Bayesian networks, JCAP, 02, 049, (2016)
[32] B. Leistedt, D.W. Hogg, R.H. Wechsler and J. DeRose, Hierarchical modeling and statistical calibration for photometric redshifts, arXiv:1807.01391 [INSPIRE].
[33] Feeney, SM; Mortlock, DJ; Dalmasso, N., Clarifying the Hubble constant tension with a Bayesian hierarchical model of the local distance ladder, Mon. Not. Roy. Astron. Soc., 476, 3861, (2018)
[34] R. van Handel, Probability in high dimension, technical report, Princeton University, Princeton U.S.A. (2014).
[35] N. Ay, J. Jost, H. Vân Lê and L. Schwachhöfer, Information geometry, Springer, Germany (2017).
[36] Csiszár, I., Axiomatic characterizations of information measures, Entropy, 10, 261, (2008) · Zbl 1179.94043
[37] N. Tishby, F.C. Pereira and W. Bialek, The information bottleneck method, physics/0004057.
[38] N. Tishby and N. Zaslavsky, Deep learning and the information bottleneck principle, in the proceedings of the Information Theory Workshop (ITW 2015), October 11-15, Seju, Korea (2015).
[39] R. Shwartz-Ziv and N. Tishby, Opening the black box of deep neural networks via information, arXiv:1703.00810 [INSPIRE].
[40] S. Gao, G.V. Steeg and A. Galstyan, Efficient estimation of mutual information for strongly dependent variables, arXiv:1411.2003.
[41] Szabó, Z., Information theoretical estimators toolbox, J. Machine Learn. Res., 15, 283, (2014) · Zbl 1317.68190
[42] Szabó, Z.; Póczos, B.; Lőrincz, A., Separation theorem for independent subspace analysis and its consequences, Pattern Rec., 45, 1782, (2012) · Zbl 1231.68235
[43] Easther, R.; Frazer, J.; Peiris, HV; Price, LC, Simple predictions from multifield inflationary models, Phys. Rev. Lett., 112, 161302, (2014)
[44] M. Dias, J. Frazer and M.c.D. Marsh, Seven lessons from manyfield inflation in random potentials, JCAP01 (2018) 036 [arXiv:1706.03774] [INSPIRE].
[45] T. Tao, Topics in random matrix theory, American Mathematical Sociery, U.S.A. (2012).
[46] L.C. Price, H.V. Peiris, J. Frazer and R. Easther, Gravitational wave consistency relations for multifield inflation, Phys. Rev. Lett.114 (2015) 031301 [arXiv:1409.2498] [INSPIRE].
[47] Dias, M.; Frazer, J.; Marsh, MCD, Simple emergent power spectra from complex inflationary physics, Phys. Rev. Lett., 117, 141303, (2016)
[48] Bjorkmo, T.; Marsh, MCD, Manyfield inflation in random potentials, JCAP, 02, 037, (2018)
[49] Amin, MA; Baumann, D., From wires to cosmology, JCAP, 02, 045, (2016)
[50] Amin, MA; Garcia, MAG; Xie, H-Y; Wen, O., Multifield stochastic particle production: beyond a maximum entropy ansatz, JCAP, 09, 015, (2017)
[51] Green, D., Disorder in the early universe, JCAP, 03, 020, (2015)
[52] T. Tao and V. Vu, Random matrices: The Universality phenomenon for Wigner ensembles, arXiv:1202.0068. · Zbl 1310.15077
[53] Tracy, CA; Widom, H., Level spacing distributions and the Airy kernel, Commun. Math. Phys., 159, 151, (1994) · Zbl 0789.35152
[54] Bai, ZD; etal., Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a wigner matrix, Ann. Prob., 16, 1729, (1988) · Zbl 0677.60038
[55] M. Capitaine, C. Donati-Martin and D. Féral, The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations, arXiv:0706.0136.
[56] D. Féral and S. Péché, The largest eigenvalue of rank one deformation of large Wigner matrices, Commun. Math. Phys.272 (2007) 185 [math/0605624].
[57] R. May, G. Dandy and H. Maier, Review of input variable selection methods for artificial neural networks, in Artificial neural networks. Methodological advances and biomedical applications, K. Suzuki, InTech (2011).
[58] J. Brehmer, K. Cranmer, F. Kling and T. Plehn, Better Higgs boson measurements through information geometry, Phys. Rev.D 95 (2017) 073002 [arXiv:1612.05261] [INSPIRE].
[59] K.S. Brown and J.P. Sethna, Statistical mechanical approaches to models with many poorly known parameters, Phys. Rev.E 68 (2003) 021904.
[60] Brown, KS; etal., The statistical mechanics of complex signaling networks: nerve growth factor signaling, Phys. Biol., 1, 184, (2004)
[61] Waterfall, JJ; etal., Sloppy-model universality class and the Vandermonde matrix, Phys. Rev. Lett., 97, 150601, (2006)
[62] D.J. Spiegelhalter, N.G. Best, B.P. Carlin and A. Van Der Linde, Bayesian measures of model complexity and fit, J. Roy. Stat. Soc.B 64 (2002) 583.
[63] M. Kunz, R. Trotta and D.R. Parkinson, Measuring the effective complexity of cosmological models, Phys. Rev.D 74 (2006) 023503.
[64] D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett.78 (1997) 1861 [hep-ph/9606387] [INSPIRE].
[65] Banks, T.; Dine, M.; Fox, PJ; Gorbatov, E., On the possibility of large axion decay constants, JCAP, 06, 001, (2003)
[66] Svrček, P.; Witten, E., Axions in string theory, JHEP, 06, 051, (2006)
[67] Arkani-Hamed, N.; Motl, L.; Nicolis, A.; Vafa, C., The String landscape, black holes and gravity as the weakest force, JHEP, 06, 060, (2007)
[68] J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP01 (2005) 005 [hep-ph/0409138] [INSPIRE].
[69] A.R. Liddle, A. Mazumdar and F.E. Schunck, Assisted inflation, Phys. Rev.D 58 (1998) 061301 [astro-ph/9804177] [INSPIRE].
[70] E.J. Copeland, A. Mazumdar and N.J. Nunes, Generalized assisted inflation, Phys. Rev.D 60 (1999) 083506 [astro-ph/9904309] [INSPIRE].
[71] Dimopoulos, S.; Kachru, S.; McGreevy, J.; Wacker, JG, N-flation, JCAP, 08, 003, (2008)
[72] D. Baumann and L. McAllister, Inflation and string theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2015).
[73] Cicoli, M.; Quevedo, F., String moduli inflation: an overview, Class. Quant. Grav., 28, 204001, (2011) · Zbl 1228.83002
[74] A. Westphal, String cosmologyLarge-field inflation in string theory, Int. J. Mod. Phys.A 30 (2015) 1530024 [arXiv:1409.5350] [INSPIRE].
[75] Buchmüller, W.; etal., Challenges for large-field inflation and moduli stabilization, JHEP, 04, 058, (2015)
[76] I. Valenzuela, Backreaction issues in axion monodromy and Minkowski 4-forms, JHEP06 (2017) 098 [arXiv:1611.00394] [INSPIRE]. · Zbl 1380.85022
[77] Baume, F.; Palti, E., Backreacted axion field ranges in string theory, JHEP, 08, 043, (2016) · Zbl 1390.83324
[78] Blumenhagen, R.; Valenzuela, I.; Wolf, F., The swampland conjecture and F-term axion monodromy inflation, JHEP, 07, 145, (2017) · Zbl 1380.85012
[79] R. Blumenhagen, Large field inflation/quintessence and the refined swampland distance conjecture, PoS(CORFU2017)175 [arXiv:1804.10504] [INSPIRE].
[80] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE]. · Zbl 1244.83036
[81] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev.D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
[82] Taylor, W.; Wang, Y-N, The F-theory geometry with most flux vacua, JHEP, 12, 164, (2015) · Zbl 1388.81367
[83] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys., 4, 1209, (2002) · Zbl 1017.52007
[84] Flauger, R.; McAllister, L.; Pajer, E.; Westphal, A.; Xu, G., Oscillations in the CMB from axion monodromy inflation, JCAP, 06, 009, (2010)
[85] Cheung, C.; etal., The effective field theory of inflation, JHEP, 03, 014, (2008)
[86] Flauger, R.; McAllister, L.; Silverstein, E.; Westphal, A., Drifting oscillations in axion monodromy, JCAP, 10, 055, (2017)
[87] N. Kaloper and A. Lawrence, London equation for monodromy inflation, Phys. Rev.D 95 (2017) 063526 [arXiv:1607.06105] [INSPIRE].
[88] G. D’Amico, N. Kaloper and A. Lawrence, Monodromy inflation in the strong coupling regime of the effective field theory, Phys. Rev. Lett.121 (2018) 091301 [arXiv:1709.07014] [INSPIRE].
[89] P.-S. Laplace, Pierre-Simon Laplace philosophical essay on probabilities: translated from the fifth french edition of 1825 with notes by the translator, Springer, Germany (2012).
[90] M. Dias, J. Frazer and D. Seery, Computing observables in curved multifield models of inflationA guide (with code) to the transport method, JCAP12 (2015) 030 [arXiv:1502.03125] [INSPIRE].
[91] M. Dias, J. Frazer, D.J. Mulryne and D. Seery, Numerical evaluation of the bispectrum in multiple field inflationThe transport approach with code, JCAP12 (2016) 033 [arXiv:1609.00379] [INSPIRE].
[92] GPy: a gaussian process framework in Python, http://github.com/SheffieldML/GPy (2012).
[93] Pedregosa, F.; etal., Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12, 2825, (2011) · Zbl 1280.68189
[94] G. Ver Steeg, Npeet: Non-parametric entropy estimation toolbox, https://github.com/gregversteeg/NPEET.
[95] G. Ver Steeg and A. Galstyan, Information-theoretic measures of influence based on content dynamics, in the proceedings of the 6thACM international conference on Web search and data mining (WSDM 2015), February 2-6, Shangai, China (2013).
[96] H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE]. · Zbl 1117.81117
[97] Weinberg, S., Anthropic bound on the cosmological constant, Phys. Rev. Lett., 59, 2607, (1987)
[98] Denef, F.; Douglas, MR, Distributions of flux vacua, JHEP, 05, 072, (2004)
[99] A. Hebecker and J. March-Russell, The ubiquitous throat, Nucl. Phys.B 781 (2007) 99 [hep-th/0607120] [INSPIRE]. · Zbl 1188.83085
[100] Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].
[101] E. Silverstein, The dangerous irrelevance of string theory, arXiv:1706.02790 [INSPIRE].
[102] G. Livan, M. Novaes and P. Vivo, Introduction to random matrices: theory and practice, Springer, Germany (2018).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.