×

zbMATH — the first resource for mathematics

Spontaneous scalarization of charged black holes at the approach to extremality. (English) Zbl 1416.83082
Summary: We study static, spherically symmetric and electrically charged black hole solutions in a quadratic Einstein-scalar-Gauss-Bonnet gravity model. Very similar to the uncharged case, black holes undergo spontaneous scalarization for sufficiently large scalar-tensor coupling \(\gamma\) – a phenomenon attributed to a tachyonic instability of the scalar field system. While in the uncharged case, this effect is only possible for positive values of \(\gamma\), we show that for sufficiently large values of the electric charge \(Q\) two independent domains of existence in the \(\gamma\)-\(Q\)-plane appear: one for positive \(\gamma\) and one for negative \(\gamma\). We demonstrate that this new domain for negative \(\gamma\) exists because of the fact that the near-horizon geometry of a nearly extremally charged black hole is \(\mathrm{AdS}_2 \times S^2\). This new domain appears for electric charges larger than approximately 74% of the extremal charge. For positive \(\gamma\) we observe that a singularity with diverging curvature invariants forms outside the horizon when approaching extremality.

MSC:
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C57 Black holes
Software:
COLSYS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Einstein, A., Die Feldgleichungen der Gravitation, Sitz.ber. Preuss. Akad. Wiss., 844, (1915); Die Grundlage der allgemeinen Relativitätstheorie, Ann. Phys., 49, 769, (1916)
[2] Abbott, B. P., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116, 6, Article 061102 pp., (2016); Abbott, B. P., GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett., 116, 24, Article 241103 pp., (2016); Abbott, B. P., GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett., 118, 22, Article 221101 pp., (2017); Abbott, B. P., GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence, Phys. Rev. Lett., 119, 14, Article 141101 pp., (2017); Abbott, B. P., GW170608: observation of a 19-solar-mass binary black hole coalescence
[3] Schwarzschild, K., Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitz.ber. Königlich Preuss. Akad. Wiss., 7, (1916) · JFM 46.1296.02
[4] Reissner, H., Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie, Ann. Phys., 355, 106, (1916); Nordström, G., On the energy of the gravitational field in Einstein’s theory, Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk., Amsterdam, 26, 1201, (1918)
[5] Jebsen, J. T., Über die allgemeinen kugelsymmetrischen Lösungen der Einsteinschen Gravitationsgleichungen im Vakuum, Arkiv för Matematik, Astron. Fys., 15, 1, (1921); Birkhoff, G. D., (Relativity and Modern Physics, (1923), Harvard University Press: Harvard University Press Cambridge, Massachusetts)
[6] Israel, W., Event horizons in static vacuum space-times, Phys. Rev., 164, 1776, (1967)
[7] Kerr, R., Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett., 11, 237, (1963); Newman, E.; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R., Metric of a rotating, charged mass, J. Math. Phys., 6, 918, (1965)
[8] Hawking, S. W., Black holes in general relativity, Commun. Math. Phys., 25, 152, (1972)
[9] Carter, B., Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett., 26, 331, (1971); Carter, B., The vacuum black hole uniqueness theorem and its conceivable generalisations, (Proceedings of the 1st Marcel Grossmann Meeting on General Relativity, (1977)), 243
[10] Robinson, D., Uniqueness of the Kerr black hole, Phys. Rev. Lett., 34, 905, (1975)
[11] Heusler, M., Stationary black holes: uniqueness and beyond, Living Rev. Relativ., 1, (1998) · Zbl 1023.83006
[12] Misner, C.; Thorne, K.; Wheeler, J., Gravitation, (1973), W.H. Freeman and Company
[13] Chase, J. E., Event horizons in static scalar-vacuum space-times, Commun. Math. Phys., 19, 276, (1970) · Zbl 0202.27702
[14] Bekenstein, J. D., Transcendence of the law of baryon-number conservation in black hole physics, Phys. Rev. Lett., 28, 452, (1972)
[15] Teitelboim, C., Lett. Nuovo Cimento, 3, 326, (1972)
[16] Bekenstein, J. D., Novel “No hair theorem” for black holes, Phys. Rev. D, 51, Article R6608 pp., (1992)
[17] Brans, C.; Dicke, R. H., Mach’s principle and a relativistic theory of gravitation, Phys. Rev., 124, 925, (1961) · Zbl 0103.21402
[18] Horndeski, G. W., Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys., 10, 363, (1974)
[19] Deffayet, C.; Steer, D. A., A formal introduction to Horndeski and Galileon theories and their generalizations, Class. Quantum Gravity, 30, Article 214006 pp., (2013) · Zbl 1277.83006
[20] Charmousis, C., From Lovelock to Horndeski’s generalized scalar tensor theory, Lect. Notes Phys., 892, 25, (2015)
[21] Sotiriou, T. P.; Zhou, S. Y., Black hole hair in generalized scalar-tensor gravity: an explicit example, Phys. Rev. D, 90, Article 124063 pp., (2014)
[22] Babichev, E.; Charmousis, C.; Lehébel, A., Asymptotically flat black holes in Horndeski theory and beyond, J. Cosmol. Astropart. Phys., 1704, Article 027 pp., (2017)
[23] Bekenstein, J. D., Exact solutions of Einstein conformal scalar equations, Ann. Phys., 82, 535, (1974); Bocharova, N. M.; Bronnikov, K. A.; Melnikov, V. N., Instability of black holes with scalar charge, Vestn. Mosk. Univ., Fiz. Astron., 6, 706, (1970), (in Russian)
[24] Silva, H. O.; Sakstein, J.; Gualtieri, L.; Sotiriou, T. P.; Berti, E., Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett., 120, Article 131104 pp., (2018)
[25] Doneva, D. D.; Yazadjiev, S. S., New Gauss-Bonnet black holes with curvature-induced scalarization in extended scalar-tensor theories, Phys. Rev. Lett., 120, Article 131103 pp., (2018)
[26] Antoniou, G.; Bakopoulos, A.; Kanti, P., Evasion of no-hair theorems and novel black-hole solutions in Gauss-Bonnet theories, Phys. Rev. Lett., 120, Article 131102 pp., (2018)
[27] Antoniou, G.; Bakopoulos, A.; Kanti, P., Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories, Phys. Rev. D, 97, Article 084037 pp., (2018)
[28] Minamitsuji, M.; Ikeda, T., Scalarized black holes in the presence of the coupling to Gauss-Bonnet gravity, Phys. Rev. D, 99, Article 044017 pp., (2019)
[29] Brihaye, Y.; Ducobu, L., Hairy black holes: from shift symmetry to spontaneous scalarization · Zbl 1344.83027
[30] Silva, H. O.; Macedo, C. F.B.; Sotiriou, T. P.; Gualtieri, L.; Sakstein, J.; Berti, E., On the stability of scalarized black hole solutions in scalar-Gauss-Bonnet gravity
[31] Doneva, D. D.; Kiorpelidi, S.; Nedkova, P. G.; Papantonopoulos, E.; Yazadjiev, S. S., Charged Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories, Phys. Rev. D, 98, Article 104056 pp., (2018)
[32] Herdeiro, C. A.R.; Radu, E.; Sanchis-Gual, N.; Font, J. A., Spontaneous scalarization of charged black holes, Phys. Rev. Lett., 121, 10, Article 101102 pp., (2018)
[33] Herdeiro, C. A.R.; Radu, E., Black hole scalarisation from the breakdown of scale-invariance
[34] Carroll, S. M.; Johnson, M. C.; Randall, L., Extremal limits and black hole entropy, J. High Energy Phys., 0911, Article 109 pp., (2009)
[35] Aharony, O.; Gubser, S.; Maldacena, J.; Ooguri, H.; Oz, Y., Large N field theories, string theory and gravity, Phys. Rep., 323, 183, (2000), See e.g. · Zbl 1368.81009
[36] Strominger, A., Black hole entropy from near horizon microstates, J. High Energy Phys., 9802, Article 009 pp., (1998) · Zbl 0955.83010
[37] See e.g. [38], p. 205, “And finally, the fact that the Reissner-Nordström solution has two horizons, an external event horizon and an internal ’Cauchy horizon,’ provides a convenient bridge to the study of the Kerr solution in the subsequent chapters.”, retrieved 11 April 2017.
[38] Chandrasekhar, S., The Mathematical Theory of Black Holes, (1998), Oxford University Press · Zbl 0912.53053
[39] Ascher, U.; Christiansen, J.; Russell, R. D., A collocation solver for mixed order systems of boundary value problems, Math. Comput., 33, 659, (1979); Ascher, U.; Christiansen, J.; Russell, R. D., Collocation software for boundary-value ODEs, ACM Trans., 7, 209, (1981) · Zbl 0407.65035
[40] Bezrukov, F. L.; Magnin, A.; Shaposhnikov, M., Standard model Higgs boson mass from inflation, Phys. Lett. B, 675, 88, (2009); Bezrukov, F.; Shaposhnikov, M., Inflation, LHC and the Higgs boson, C. R. Phys., 16, 994, (2015); Bezrukov, F.; Shaposhnikov, M., Higgs inflation at the critical point, Phys. Lett. B, 734, 249, (2014)
[41] Ezquiaga, J. M.; Garcia-Bellido, J.; Ruiz Morales, E., Primordial black hole production in critical Higgs inflation, Phys. Lett. B, 776, 345, (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.