×

zbMATH — the first resource for mathematics

Roughness-induced transition by quasi-resonance of a varicose global mode. (English) Zbl 1419.76260
Summary: The onset of unsteadiness in a boundary-layer flow past a cylindrical roughness element is investigated for three flow configurations at subcritical Reynolds numbers, both experimentally and numerically. On the one hand, a quasi-periodic shedding of hairpin vortices is observed for all configurations in the experiment. On the other hand, global stability analyses have revealed the existence of a varicose isolated mode, as well as of a sinuous one, both being linearly stable. Nonetheless, the isolated stable varicose modes are highly sensitive, as ascertained by pseudospectrum analysis. To investigate how these modes might influence the dynamics of the flow, an optimal forcing analysis is performed. The optimal response consists of a varicose perturbation closely related to the least stable varicose isolated eigenmode and induces dynamics similar to that observed experimentally. The quasi-resonance of such a global mode to external forcing might thus be responsible for the onset of unsteadiness at subcritical Reynolds numbers, hence providing a simple explanation for the experimental observations.

MSC:
76F06 Transition to turbulence
76E05 Parallel shear flows in hydrodynamic stability
Software:
eigs; IRAM; Nek5000
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Acarlar, M. S.; Smith, C. R., A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance, J. Fluid Mech., 175, 1-41, (1987)
[2] Åkervik, E.; Brandt, L.; Henningson, D. S.; Hoepffner, J.; Marxen, O.; Schlatter, P., Steady solutions of the Navier-Stokes equations by selective frequency damping, Phys. Fluids, 18, (2006)
[3] Arnal, D., Houdeville, R., Séraudie, A. & Vermeersch, O.2011Overview of laminar-turbulent transition investigations at ONERA toulouse. In 41st AIAA Fluid Fynamics Conference.
[4] Bagheri, S.; Schlatter, P.; Schmid, P. J.; Henningson, D. S., Global stability of a jet in crossflow, J. Fluid Mech., 624, 33-44, (2009) · Zbl 1171.76372
[5] Baker, C. J., The laminar horseshoe vortex, J. Fluid Mech., 95, 347-367, (1978)
[6] Bernardini, M.; Pirozzoli, S.; Orlandi, P., Compressibility effects on roughness-induced boundary layer transition, Intl J. Heat Fluid Flow, 35, 45-51, (2012)
[7] Braslow, A. L.1960 Review of the effect of distributed surface roughness on boundary-layer transition. Tech. Rep. Advisory Group for Aeronautical Research and Development, Paris (France).
[8] Cherubini, S.; De Tullio, M. D.; De Palma, P.; Pascazio, G., Transient growth in the flow past a three-dimensional smooth roughness element, J. Fluid Mech., 724, 642-670, (2013) · Zbl 1287.76081
[9] Citro, V.; Giannetti, F.; Luchini, P.; Auteri, F., Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element, Phys. Fluids, 27, 8, 084110, (2015)
[10] Cossu, C.; Brandt, L., On tollmien-schlichting-like waves in streaky boundary layers, Eur. J. Mech. (B/Fluids), 23, 815-833, (2004) · Zbl 1060.76040
[11] Denissen, N. A.; White, E. B., Roughness-induced bypass transition revisited, AIAA J., 46, 7, 1874-1877, (2008)
[12] Denissen, N. A.; White, E. B., Continuous spectrum analysis of roughness-induced transient growth, Phys. Fluids, 21, (2009) · Zbl 1183.76176
[13] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-Order Methods for Incompressible Fluid Flow, (2002), Cambridge University Press · Zbl 1007.76001
[14] Von Doenhoff, A. E. & Baslow, A. L.1961Boundary Layer and Flow Control, its Principles and Application - The Effect of Distributed Surface Roughness on Laminar Flows, pp. 657-681. Pergamon.
[15] Edwards, W. S.; Tuckerman, L. S.; Friesner, R. A.; Sorensen, D. C., Krylov methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 110, 1, 82-102, (1994) · Zbl 0792.76062
[16] Ergin, F. G.; White, E. B., Unsteady and transitional flows behind roughness elements, AIAA J., 44, 11, 2504-2514, (2006)
[17] Fischer, P. & Choudhari, M.2004Numerical simulation of roughness induced transient growth in a laminar boundary layer. In 34th AIAA Fluid Dynamics Conference.
[18] Fischer, P. F., Kruse, J., Mullen, J., Tufo, H., Lottes, J. W. & Kerkemeier, S. G.2008 Nek5000-open source spectral element CFD solver. Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL. http://nek5000.mcs.anl.gov/index.php/MainPage.
[19] Fransson, J. H. M.; Brandt, L.; Talamelli, A.; Cossu, C., Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer, Phys. Fluids, 16, 10, 3627-3638, (2004) · Zbl 1187.76162
[20] Gregory, N. & Walker, W. S.1955 The effect of transition of isolated surface excrescences in the boundary layer. Tech. Rep. R. & M 2779. Aeronautical Research Council, England.
[21] Van Ingen, J. L.1956 A suggested semi-empirical method for the calculation of the boundary layer transition region. Tech. Rep., VTH-74.
[22] Jeong, J.; Hussain, F., On the identification of a vortex, J. Fluid Mech., 285, 69-94, (1995) · Zbl 0847.76007
[23] Joslin, R. D.; Grosch, C. E., Growth characterisitcs downstream of a shallow bump: computation and experiments, Phys. Fluids, 7, 3042-3047, (1995)
[24] Klebanoff, P. S.; Cleveland, W. G.; Tidstrom, K. D., On the evolution of a turbulent boundary layer induced by a three-dimensional roughness element, J. Fluid Mech., 237, 101-187, (1992)
[25] Klebanoff, P. S.; Tidstrom, K. D., Mechanism by which a two-dimensional roughness element induces boundary-layer transition, Phys. Fluids, 15, 7, 1173-1188, (1972)
[26] Kurz, H. B. E.; Kloker, M. J., Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer, J. Fluid Mech., 796, 158-194, (2016)
[27] Landahl, M. T., Wave breakdown and turbulence, SIAM J. Appl. Maths, 28, 735-756, (1975) · Zbl 0276.76023
[28] Lechoucq, R. B.; Sorensen, D. C., Deflation techniques for an implicitely restarted Arnoldi iteration, SIAM J. Matrix Anal. Applics, 17, 4, 789-821, (1996) · Zbl 0863.65016
[29] Loiseau, J.-C.; Robinet, J.-C.; Cherubini, S.; Leriche, E., Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations, J. Fluid Mech., 760, 175-211, (2014)
[30] Luchini, P.; Bottaro, A., Adjoint equations in stability analysis, Annu. Rev. Fluid Mech., 46, 493-517, (2014) · Zbl 1297.76068
[31] Lundbladh, A., Berlin, S., Skote, M., Hildings, C., Choi, J., Kim, J. & Henningson, D. S.1999 An efficient spectral method for simulation of incompressible flow over a flat plate. Trita-mek. Tech. Rep. 11.
[32] Monokrousos, A.; Åkervik, E.; Brandt, L.; Henningson, D. S., Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers, J. Fluid Mech., 650, 181-214, (2010) · Zbl 1189.76192
[33] Patera, A. T., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54, 468-488, (1984) · Zbl 0535.76035
[34] Perraud, J., Arnal, D., Séraudie, A. & Tran, D.2004Laminar-turbulent transition on aerodynamics surfaces with imperfections. In Proceedings of RTO AVT-111 Symposium, Prague, Czech Republic.
[35] Puckert, D. K.; Dieterle, M.; Rist, U., Reduction of freestream turbulence at low velocities, Exp. Fluids, 58, 5, 45, (2017)
[36] Schmid, P. J., Nonmodal stability theory, Annu. Rev. Fluid Mech., (2007) · Zbl 1296.76055
[37] Shahinfar, S.; Fransson, J. H. M.; Talamelli, A., Revival of classical vortex generators now for transition delay, Phys. Rev. Lett., 109, 7, (2012)
[38] Shin, Y.; Rist, U.; Krämer, E., Stability of the laminar boundary-layer flow behind a roughness element, Exp. Fluids, 56, 1, 11, (2015)
[39] Smith, A. M. O. & Gamberoni, N.1956 Transition, pressure gradient and stability theory. Tech. Rep. ES-26388, Douglas Aircraft Company.
[40] Sorensen, D. C., Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Applics, 13, 357-385, (1992) · Zbl 0763.65025
[41] Stewart, G. W., A Krylov-Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Applics, 23, 601-614, (2001) · Zbl 1003.65045
[42] Subasi, A., Puckert, D., Gunes, H. & Rist, U.2015Calibration of constant temperature anemometry with hot-film probes for low speed laminar water channel flows. In The 13th International Symposium on Fluid Control, Measurement and Visualization. Doha, Qatar. Flucome 2015.
[43] Subbareddy, P. K.; Bartkowicz, M. D.; Candler, G. V., Direct numerical simulation of high-speed transition due to an isolated roughness element, J. Fluid Mech., 748, 848-878, (2014) · Zbl 1416.76257
[44] Tani, I., Komoda, H. & Komatsu, Y1962 Boundary-layer transition by isolated roughness. Tech. Rep. 375. Aeronautical Research Institute, University of Tokyo.
[45] Toh, K.-C.; Trefethen, L. N., Calculation of pseudospectra by the Arnoldi iteration, SIAM J. Sci. Comput., 17, 1, 1-15, (1996) · Zbl 0842.65022
[46] Trefethen, L.; Embree, M., Spectra and Pseudospectra, (2005), Princeton University Press
[47] De Tullio, N.; Paredes, P.; Sandham, N. D.; Theofilis, V., Laminar-turbulent transition induced by discrete roughness element in a supersonic boundary layer, J. Fluid Mech., 735, 613-646, (2013) · Zbl 1294.76214
[48] Tumin, A.; Reshotko, E., Receptivity of a boundary-layer flow to a three-dimensional hump at finite Reynolds numbers, Phys. Fluids, 17, (2005) · Zbl 1187.76530
[49] Vermeersch, O.2009 Etude et modélisation du phénomène de croissance transition pour des couches limites incompressibles et compressibles. PhD thesis, ISAE, Toulouse.
[50] Ye, Q.; Schrijer, F. F. J.; Scarano, F., Boundary layer transition mechanisms behind a micro-ramp, J. Fluid Mech., 793, 132-161, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.