×

zbMATH — the first resource for mathematics

On adaptive BDDC for the flow in heterogeneous porous media. (English) Zbl 07088743
Summary: We study a method based on Balancing Domain Decomposition by Constraints (BDDC) for numerical solution of a single-phase flow in heterogeneous porous media. The method solves for both flux and pressure variables. The fluxes are resolved in three steps: the coarse solve is followed by subdomain solves and last we look for a divergence-free flux correction and pressures using conjugate gradients with the BDDC preconditioner. Our main contribution is an application of the adaptive algorithm for selection of flux constraints. Performance of the method is illustrated on the benchmark problem from the 10th SPE Comparative Solution Project (SPE 10). Numerical experiments in both 2D and 3D demonstrate that the first two steps of the method exhibit some numerical upscaling properties, and the adaptive preconditioner in the last step allows a significant decrease in the number of iterations of conjugate gradients at a small additional cost.
MSC:
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aarnes, J. E.; Gimse, T.; Lie, K.-A., An introduction to the numerics of flow in porous media using Matlab, Geometric Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF Springer, Berlin (2007), 265-306
[2] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids, Multiscale Model. Simul. 5 (2006), 337-363
[3] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., Multiscale mixed/mimetic methods on corner-point grids, Comput. Geosci. 12 (2008), 297-315
[4] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15, Springer, New York (1991)
[5] Christie, M. A.; Blunt, M. J., Tenth SPE comparative solution project: A comparison of upscaling techniques, SPE Reservoir Eval. Eng. 4 (2001), 308-317
[6] Cowsar, L. C.; Mandel, J.; Wheeler, M. F., Balancing domain decomposition for mixed finite elements, Math. Comput. 64 (1995), 989-1015
[7] Cros, J.-M., A preconditioner for the Schur complement domain decomposition method, 14th Int. Conf. on Domain Decomposition Methods in Science and Engineering I. Herrera et al. National Autonomous University of Mexico (UNAM), México (2003), 373-380
[8] Demmel, J. W., Applied Numerical Linear Algebra, Society for Industrial and Applied Mathematics, Philadelphia (1997)
[9] Dohrmann, C. R., A preconditioner for substructuring based on constrained energy minimization, SIAM J. Sci. Comput. 25 (2003), 246-258
[10] Dohrmann, C. R., A substructuring preconditioner for nearly incompressible elasticity problems, Technical report SAND 2004-5393, Sandia National Laboratories (2004)
[11] Dohrmann, C. R.; Widlund, O. B., Some recent tools and a BDDC algorithm for 3D problems in \(H( curl)\), Domain Decomposition Methods in Science and Engineering XX Lecture Notes Computational Science and Engineering 91, Springer, Heidelberg (2013), 15-25
[12] Efendiev, Y.; Hou, T. Y., Multiscale Finite Element Methods: Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences 4, Springer, New York (2009)
[13] Ewing, R. E.; Wang, J., Analysis of the Schwarz algorithm for mixed finite elements methods, RAIRO, Modélisation Math. Anal. Numér. 26 (1992), 739-756
[14] Farhat, C.; Lesoinne, M.; LeTallec, P.; Pierson, K.; Rixen, D., FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method, Int. J. Numer. Methods Eng. 50 (2001), 1523-1544
[15] Farhat, C.; Lesoinne, M.; Pierson, K., A scalable dual-primal domain decomposition method, Numer. Linear Algebra Appl. 7 (2000), 687-714
[16] Fragakis, Y.; Papadrakakis, M., The mosaic of high performance domain decomposition methods for structural mechanics: formulation, interrelation and numerical efficiency of primal and dual methods, Comput. Methods Appl. Mech. Eng. 192 (2003), 3799-3830
[17] Glowinski, R.; Wheeler, M. F., Domain decomposition and mixed finite element methods for elliptic problems, First International Symposium on Domain Decomposition Methods for Partial Differential Equations SIAM, Philadelphia (1988), 144-172
[18] Golub, G. H.; Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore (1996)
[19] Hanek, M.; Šístek, J.; Burda, P., The effect of irregular interfaces on the BDDC method for the Navier-Stokes equations, Proc. Int. Conf. Domain Decomposition Methods in Science and Engineering XXIII Lecture Notes Computational Science and Engineering 116, Springer, Cham (2017), 171-178
[20] Karypis, G.; Kumar, V., METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0, Technical report, Department of Computer Science, University of Minnesota (1998)
[21] Klawonn, A.; Kühn, M.; Rheinbach, O., Adaptive coarse spaces for FETI-DP in three dimensions, SIAM J. Sci. Comput. 38 (2016), A2880–A2911 (2016)
[22] Klawonn, A.; Kühn, M.; Rheinbach, O., A closer look at local eigenvalue solvers for adaptive FETI-DP and BDDC, Technical report, Universität zu Köln (2018). Available at https://kups.ub.uni-koeln.de/9020/
[23] Klawonn, A.; Rheinbach, O.; Widlund, O. B., An analysis of a FETI-DP algorithm on irregular subdomains in the plane, SIAM J. Numer. Anal. 46 (2008), 2484-2504
[24] Knyazev, A. V., Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comput. 23 (2001), 517-541
[25] Christensen, M. la Cour; Villa, U.; Engsig-Karup, A. P.; Vassilevski, P. S., Numerical multilevel upscaling for incompressible flow in reservoir simulation: an element-based algebraic multigrid (AMGe) approach, SIAM J. Sci. Comput. 39 (2017), B102–B137
[26] Li, J.; Tu, X., Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems, Numer. Linear Algebra Appl. 16 (2009), 745-773
[27] Li, J.; Widlund, O. B., BDDC algorithms for incompressible Stokes equations, SIAM J. Numer. Anal. 44 (2006), 2432-2455
[28] Li, J.; Widlund, O. B., FETI-DP, BDDC, and block Cholesky methods, Int. J. Numer. Methods Eng. 66 (2006), 250-271
[29] Mandel, J.; Sousedík, B., Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods, Comput. Methods Appl. Mech. Eng. 196 (2007), 1389-1399
[30] Mandel, J.; Sousedík, B.; Dohrmann, C. R., Multispace and multilevel BDDC, Computing 83 (2008), 55-85
[31] Mandel, J.; Sousedík, B.; Šístek, J., Adaptive BDDC in three dimensions, Math. Comput. Simul. 82 (2012), 1812-1831
[32] Mathew, T. P., Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems. I. Algorithms and numerical results, Numer. Math. 65 (1993), 445-468
[33] Oh, D.-S.; Widlund, O. B.; Zampini, S.; Dohrmann, C. R., BDDC algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields, Math. Comput. 87 (2018), 659-692
[34] Pechstein, C., Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems, Lecture Notes in Computational Science and Engineering 90, Springer, Berlin (2013)
[35] Pechstein, C.; Dohrmann, C. R., A unified framework for adaptive BDDC, ETNA, Electron. Trans. Numer. Anal. 46 (2017), 273-336
[36] Pechstein, C.; Scheichl, R., Analysis of FETI methods for multiscale PDEs. Part II: interface variation, Numer. Math. 118 (2011), 485-529
[37] Šístek, J.; Březina, J.; Sousedík, B., BDDC for mixed-hybrid formulation of flow in porous media with combined mesh dimensions, Numer. Linear Algebra Appl. 22 (2015), 903-929
[38] Sousedík, B., Nested BDDC for a saddle-point problem, Numer. Math. 125 (2013), 761-783
[39] Sousedík, B.; Šístek, J.; Mandel, J., Adaptive-multilevel BDDC and its parallel implementation, Computing 95 (2013), 1087-1119
[40] Spillane, N.; Rixen, D. J., Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms, Int. J. Numer. Methods Eng. 95 (2013), 953-990
[41] Toselli, A.; Widlund, O., Domain Decomposition Methods—Algorithms and Theory, Springer Series in Computational Mathematics 34, Springer, Berlin (2005)
[42] Tu, X., A BDDC algorithm for a mixed formulation of flow in porous media, ETNA, Electron. Trans. Numer. Anal. 20 (2005), 164-179
[43] Tu, X., A BDDC algorithm for flow in porous media with a hybrid finite element discretization, ETNA, Electron. Trans. Numer. Anal. 26 (2007), 146-160
[44] Tu, X., Three-level BDDC in three dimensions, SIAM J. Sci. Comput. 29 (2007), 1759-1780
[45] Tu, X., Three-level BDDC in two dimensions, Int. J. Numer. Methods Eng. 69 (2007), 33-59
[46] Tu, X., A three-level BDDC algorithm for a saddle point problem, Numer. Math. 119 (2011), 189-217
[47] Tu, X.; Li, J., A balancing domain decomposition method by constraints for advection-diffusion problems, Commun. Appl. Math. Comput. Sci. 3 (2008), 25-60
[48] Vecharynski, E.; Saad, Y.; Sosonkina, M., Graph partitioning using matrix values for preconditioning symmetric positive definite systems, SIAM J. Sci. Comput. 36 (2014), A63–A87
[49] Yang, Y.; Fu, S.; Chung, E. T., A two-grid preconditioner with an adaptive coarse space for flow simulations in highly heterogeneous media, Available at https://arxiv.org/abs/1807.07220 (2018), 17 pages
[50] Zampini, S.; Tu, X., Multilevel balancing domain decomposition by constraints deluxe algorithms with adaptive coarse spaces for flow in porous media, SIAM J. Sci. Comput. 39 (2017), A1389–A1415
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.