Khalili, Valiollah Universal central extension of direct limits of Hom-Lie algebras. (English) Zbl 07088784 Czech. Math. J. 69, No. 1, 275-293 (2019). Summary: We prove that the universal central extension of a direct limit of perfect Hom-Lie algebras \((\mathcal{L}_i,\alpha_{\mathcal{L}_i})\) is (isomorphic to) the direct limit of universal central extensions of \((\mathcal{L}_i,\alpha_{\mathcal{L}_i})\). As an application we provide the universal central extensions of some multiplicative Hom-Lie algebras. More precisely, we consider a family of multiplicative Hom-Lie algebras \(\{(\mathrm{sl}_k(\mathcal{A}),\alpha_k)\}_{k\in I}\) and describe the universal central extension of its direct limit. Cited in 2 Documents MSC: 17A30 Nonassociative algebras satisfying other identities 17B55 Homological methods in Lie (super)algebras 17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.) 17B99 Lie algebras and Lie superalgebras Keywords:Hom-Lie algebra; extension of Hom-Lie algebras and its direct limit PDF BibTeX XML Cite \textit{V. Khalili}, Czech. Math. J. 69, No. 1, 275--293 (2019; Zbl 07088784) Full Text: DOI OpenURL References: [1] Alison, B.; Benkart, G.; Gao, Y., Central extensions of Lie algebras graded by finite root systems, Math. Ann. 316 (2000), 499-527 [2] Ammar, F.; Ejbehi, Z.; Makhlouf, A., Cohomology and deformations of Hom-algebras, J. Lie Theory 24 (2011), 813-836 [3] Ammar, F.; Mobrouk, S.; Makhlouf, A., Representations and cohomology of \(n\)-ary multiplicative Hom-Nambu-Lie algebras, J. Geom. Phys. 61 (2011), 1898-1913 [4] Periñán, M. J. Aragón; Martín, A. J. Calderón, On graded matrix Hom-algebras, Electron. J. Linear Algebra 24 (2012), 45-65 [5] Arnal, D.; Bakbrahem, W.; Makhlouf, A., Quadratic and Pinczon algebras, Available at https://arxiv.org/pdf/1603.00435 [6] Azam, S.; Behbodi, G.; Yousofzadeh, M., Direct union of Lie tori (realization of locally extended affine Lie algebras), Commun. Algebra 44 (2016), 5309-5341 [7] Benayadi, S.; Makhlouf, A., Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys. 76 (2014), 38-60 [8] Bloch, S., The dilogarithm and extensions of Lie algebras, Algebra \(K\)-Theory, 1980 Lecture Notes in Math. 854 Springer, Berlin (1981), 1-23 [9] Bourbaki, N., Éléments de mathématique. Algèbre. Chapitres 1 à 3, Hermann, Paris (1970), French [10] Casas, J. M.; Insua, M. A.; Pacheco, N., On universal central extensions of Hom-Lie algebras, Hacet. J. Math Stat. 44 (2015), 277-288 [11] Cheng, Y.; Su, Y., (Co)homology and universal central extension of Hom-Leibniz algebras, Acta Math. Sin., Engl. Ser. 27 (2011), 813-830 [12] Cheng, Y.; Su, Y., Quantum deformations of the Heisenberg-Virasoro algebra, Algebra Colloq. 20 (2013), 299-308 [13] Frégier, Y.; Gohr, A.; Silvestrov, S. D., Unital algebras of Hom-associative type and surjective or injective twistings, J. Gen. Lie Theory Appl. 3 (2009), 285-295 [14] Gao, Y.; Shang, S., Universal coverings of Steinberg Lie algebras of small characteristic, J. Algebra. 311 (2007), 216-230 [15] Hartwig, J. T.; Larsson, D.; Silvestrov, S. D., Deformations of Lie algebras using \(\sigma\)- J. Algebra 295 (2006), 314-361 [16] Jin, Q.; Li, X., Hom-Lie algebra structures on semi-simple Lie algebras, J. Algebra 319 (2008), 1398-1408 [17] Kassel, C.; Loday, J.-L., Central extensions of Lie algebras, Ann. Inst. Fourier 32 (1982), 119-142 French [18] Khalili, V., On universal coverings of Lie tori, Bull. Korean Math. Soc. 49 (2012), 1199-1211 [19] Li, X., Representations of 3-dimensional simple multiplicative Hom-Lie algebras, Adv. Math. Phys. 2013 Article ID 938901, 7 pages [20] Makhlouf, A.; Silvestrov, S., Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64 [21] Makhlouf, A.; Silvestrov, S., Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (2010), 715-739 [22] Moody, R. V.; Pianzola, A., Lie Algebras with Triangular Decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York (1995) [23] Neeb, K.-H., Universal central extensions of Lie groups, Acts Appl. Math. 73 (2002), 175-219 [24] Neher, E., An introduction to universal central extensions of Lie superalgebras, Groups, Rings, Lie and Hopf Algebras, 2001 Math. Appl. 555, Kluwer Academic Publishers, Dordrecht Y. Bahturin (2003), 141-166 [25] Neher, E.; Sun, J., Universal central extensions of direct limits of Lie superalgebras, J. Algebra 368 (2012), 169-181 [26] Sheng, Y., Representations of Hom-Lie algebras, Alger. Represent. Theory 15 (2012), 1081-1098 [27] Kallen, W. L. J. van der, Infinitesimally Central Extensions of Chevalley Groups, Lecture Notes in Mathematics 356, Springer, Berlin (1973) [28] Weibel, C. A., An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge (1994) [29] Yau, D., Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl. 2 (2008), 95-108 [30] Yau, D., Hom-algebras and homology, J. Lie Theory 19 (2009), 409-421 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.