zbMATH — the first resource for mathematics

Strong measure zero and meager-additive sets through the prism of fractal measures. (English) Zbl 07088828
Summary: We develop a theory of sharp measure zero sets that parallels Borel’s strong measure zero, and prove a theorem analogous to Galvin-Mycielski-Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of \(2^{\omega}\) is meager-additive if and only if it is \(\mathcal{E}\)-additive; if \(f\colon 2^{\omega}\to 2^{\omega}\) is continuous and \(X\) is meager-additive, then so is \(f(X)\).

03E05 Other combinatorial set theory
03E20 Other classical set theory (including functions, relations, and set algebra)
28A78 Hausdorff and packing measures
Full Text: DOI
[1] Bartoszyński T.; Judah H., Set Theory, On the structure of the real line. A K Peters, Wellesley, 1995
[2] Bartoszyński T.; Shelah S., Closed measure zero sets, Ann. Pure Appl. Logic 58 (1992), no. 2, 93-110
[3] Besicovitch A. S., Concentrated and rarified sets of points, Acta Math. 62 (1933), no. 1, 289-300
[4] Besicovitch A. S., Correction, Acta Math. 62 (1933), no. 1, 317-318
[5] Borel E., Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France 47 (1919), 97-125 (French)
[6] Carlson T. J., Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc. 118 (1993), no. 2, 577-586
[7] Corazza P., The generalized Borel conjecture and strongly proper orders, Trans. Amer. Math. Soc. 316 (1989), no. 1, 115-140
[8] Federer H., Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer, New York, 1969
[9] Fremlin D. H., Measure Theory. Vol. 5, Set-theoretic Measure Theory, Part I, Torres Fremlin, Colchester, 2015
[10] Galvin F.; Miller A. W., \(\gamma \), -sets and other singular sets of real numbers, Topology Appl. 17 (1984), no. 2, 145-155
[11] Galvin F.; Mycielski J.; Solovay R. M., Strong measure zero sets, Abstract 79T-E25, Not. Am. Math. Soc. 26 (1979), A-280
[12] Galvin F.; Mycielski J.; Solovay R. M., Strong measure zero and infinite games, Arch. Math. Logic 56 (2017), no. 7-8, 725-732
[13] Gerlits J.; Nagy Z., Some properties of \(C(X)\), I, Topology Appl. 14 (1982), no. 2, 151-161
[14] Gödel K., The consistency of the axiom of choice and of the generalized continuum-hypothesis, Proc. Natl. Acad. Sci. USA 24 (1938), no. 12, 556-557
[15] Gödel K., The Consistency of the Continuum Hypothesis, Annals of Mathematics Studies, 3, Princeton University Press, Princeton, 1940
[16] Howroyd J. D., On the Theory of Hausdorff Measures in Metric Spaces, Ph.D. Thesis, University College, London, 1994
[17] Howroyd J. D., On Hausdorff and packing dimension of product spaces, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 4, 715-727
[18] Hrušák M.; Wohofsky W.; Zindulka O., Strong measure zero in separable metric spaces and Polish groups, Arch. Math. Logic 55 (2016), no. 1-2, 105-131
[19] Hrušák M.; Zapletal J., Strong measure zero sets in Polish groups, Illinois J. Math. 60 (2016), no. 3-4, 751-760
[20] Kelly J. D., A method for constructing measures appropriate for the study of Cartesian products, Proc. London Math. Soc. (3) 26 (1973), 521-546
[21] Kysiak M., On Erdős-Sierpiński Duality between Lebesgue Measure and Baire Category, Master’s Thesis, Uniwersytet Warszawski, Warszawa, 2000 (Polish)
[22] Laver R., On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151-169
[23] Munroe M. E., Introduction to Measure and Integration, Addison-Wesley Publishing Company, Cambridge, 1953
[24] Nowik A.; Scheepers M.; Weiss T., The algebraic sum of sets of real numbers with strong measure zero sets, J. Symbolic Logic 63 (1998), no. 1, 301-324
[25] Nowik A.; Weiss T., On the Ramseyan properties of some special subsets of \(2^\omega\) and their algebraic sums, J. Symbolic Logic 67 (2002), no. 2, 547-556
[26] Pawlikowski J., A characterization of strong measure zero sets, Israel J. Math. 93 (1996), 171-183
[27] Rogers C. A., Hausdorff Measures, Cambridge University Press, London, 1970
[28] Scheepers M., Finite powers of strong measure zero sets, J. Symbolic Logic 64 (1999), no. 3, 1295-1306
[29] Shelah S., Every null-additive set is meager-additive, Israel J. Math. 89 (1995), no. 1-3, 357-376
[30] Sierpiński W., Sur un ensemble non denombrable, dont toute image continue est de mesure nulle, Fundamenta Mathematicae 11 (1928), no. 1, 302-304 (French)
[31] Tsaban B.; Weiss T., Products of special sets of real numbers, Real Anal. Exchange 30 (2004/05), no. 2, 819-835
[32] Weiss T., On meager additive and null additive sets in the Cantor space \(2^\omega\) and in \(\Bbb R\), Bull. Pol. Acad. Sci. Math. 57 (2009), no. 2, 91-99
[33] Weiss T., Addendum to “On meager additive and null additive sets in the Cantor space \(2^\omega\) and in \(\Bbb R\)” (Bull. Polish Acad. Sci. Math. 57 (2009), 91-99), Bull. Pol. Acad. Sci. Math. 62 (2014), no. 1, 1-9
[34] Weiss T., Properties of the intersection ideal \(\mathcal M\cap \mathcal N\) revisited, Bull. Pol. Acad. Sci. Math. 65 (2017), no. 2, 107-111
[35] Weiss T.; Tsaban B., Topological diagonalizations and Hausdorff dimension, Note Mat. 22 (2003/04), no. 2, 83-92
[36] Wohofsky W., Special Sets of Real Numbers and Variants of the Borel Conjecture, Ph.D. Thesis, Technische Universität Wien, Wien, 2013
[37] Zakrzewski P., Universally meager sets, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1793-1798
[38] Zakrzewski P., Universally meager sets. II, Topology Appl. 155 (2008), no. 13, 1445-1449
[39] Zindulka O., Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps, Fund. Math. 218 (2012), no. 2, 95-119
[40] Zindulka O., Packing measures and dimensions on Cartesian products, Publ. Mat. 57 (2013), no. 2, 393-420
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.