×

zbMATH — the first resource for mathematics

Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators. (English) Zbl 07088836
Summary: We study some qualitative features like convergence, stability and data dependency for Picard-S iteration method of a quasi-strictly contractive operator under weaker conditions imposed on parametric sequences in the mentioned method. We compare the rate of convergence among the Mann, Ishikawa, Noor, normal-S, and Picard-S iteration methods for the quasi-strictly contractive operators. Results reveal that the Picard-S iteration method converges fastest to the fixed point of quasi-strictly contractive operators. Some numerical examples are given to validate the results obtained herein. Our results substantially improve many other results available in the literature.
MSC:
47J26 Fixed-point iterations
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
54H25 Fixed-point and coincidence theorems (topological aspects)
Software:
Mathematica
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akewe, H.; Okeke, G. A., Convergence and stability theorems for the Picard-Mann hybrid iterative scheme for a general class of contractive-like operators, Fixed Point Theory Appl. 2015 (2015), Paper No. 66, 8 pages
[2] Berinde, V., Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl. 2004 (2004), 97-105
[3] Berinde, V., Iterative Approximation of Fixed Points, Lecture Notes in Mathematics 1912. Springer, Berlin (2007)
[4] Berinde, V., On a notion of rapidity of convergence used in the study of fixed point iterative methods, Creat. Math. Inform. 25 (2016), 29-40
[5] Berinde, V.; Păcurar, M., A fixed point proof of the convergence of a Newton-type method, Fixed Point Theory 7 (2006), 235-244
[6] Bosede, A. O.; Rhoades, B. E., Stability of Picard and Mann iteration for a general class of functions, J. Adv. Math. Stud. 3 (2010), 23-25
[7] Chidume, C. E.; Olaleru, J. O., Picard iteration process for a general class of contractive mappings, J. Niger. Math. Soc. 33 (2014), 19-23
[8] Fukhar-ud-din, H.; Berinde, V., Iterative methods for the class of quasi-contractive type operators and comparison of their rate of convergence in convex metric spaces, Filomat 30 (2016), 223-230
[9] Gürsoy, F., A Picard-S iterative method for approximating fixed point of weak-contraction mappings, Filomat 30 (2016), 2829-2845
[10] Gürsoy, F.; Karakaya, V., A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, Avaible at https://arxiv.org/abs/1403.2546 (2014), 16 pages
[11] Gürsoy, F.; Karakaya, V.; Rhoades, B. E., Data dependence results of new multi-step and S-iterative schemes for contractive-like operators, Fixed Point Theory Appl. 2013 (2013), Paper No. 76, 12 pages
[12] Gürsoy, F.; Khan, A. R.; Fukhar-ud-din, H., Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces, Hacet. J. Math. Stat. 46 (2017), 373-388
[13] Haghi, R. H.; Postolache, M.; Rezapour, S., On T-stability of the Picard iteration for generalized \(\phi\)-contraction mappings, Abstr. Appl. Anal. 2012 (2012), Article ID 658971, 7 pages
[14] Harder, A. M.; Hicks, T. L., Stability results for fixed point iteration procedures, Math. Jap. 33 (1988), 693-706
[15] Ishikawa, S., Fixed points by a new iteration method, Proc. Am. Math. Soc. 44 (1974), 147-150
[16] Karakaya, V.; Doğan, K.; Gürsoy, F.; Ertürk, M., Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 560258, 9 pages
[17] Karakaya, V.; Gürsoy, F.; Ertürk, M., Some convergence and data dependence results for various fixed point iterative methods, Kuwait J. Sci. 43 (2016), 112-128
[18] Khan, S. H., A Picard-Mann hybrid iterative process, Fixed Point Theory Appl. 2013 (2013), Paper No. 69, 10 pages
[19] Khan, A. R.; Gürsoy, F.; Karakaya, V., Jungck-Khan iterative scheme and higher convergence rate, Int. J. Comput. Math. 93 (2016), 2092-2105
[20] Khan, A. R.; Gürsoy, F.; Kumar, V., Stability and data dependence results for the Jungck-Khan iterative scheme, Turkish J. Math. 40 (2016), 631-640
[21] Khan, A. R.; Kumar, V.; Hussain, N., Analytical and numerical treatment of Jungck-type iterative schemes, Appl. Math. Comput. 231 (2014), 521-535
[22] Mann, W. R., Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953), 506-510
[23] Okeke, G. A.; Kim, J. K., Convergence and summable almost \(T\)-stability of the random Picard-Mann hybrid iterative process, J. Inequal. Appl. 2015 (2015), Paper No. 290, 14 pages
[24] Olatinwo, M. O.; Postolache, M., Stability results for Jungck-type iterative processes in convex metric spaces, Appl. Math. Comput. 218 (2012), 6727-6732
[25] Phuengrattana, W.; Suantai, S., Comparison of the rate of convergence of various iterative methods for the class of weak contractions in Banach spaces, Thai J. Math. 11 (2013), 217-226
[26] Picard, E., Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, Journ. de Math. (4) 6 (1890), 145-210 French \99999JFM99999 22.0357.02
[27] Sahu, D. R., Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory 12 (2011), 187-204
[28] Scherzer, O., Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems, J. Math. Anal. Appl. 194 (1995), 911-933
[29] Şoltuz, Ş. M.; Grosan, T., Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl. 2008 (2008), Article ID 242916, 7 pages
[30] Xu, B.; Noor, M. A., Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 267 (2002), 444-453
[31] Yildirim, I.; Abbas, M.; Karaca, N., On the convergence and data dependence results for multistep Picard-Mann iteration process in the class of contractive-like operators, J. Nonlinear Sci. Appl. 9 (2016), 3773-3786
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.