zbMATH — the first resource for mathematics

Weighted graphs and complex Gaussian free fields. (English) Zbl 07088979
Summary: We prove a combinatorial statement about the distribution of directed currents in a complex “loop soup” and use it to give a new proof of the isomorphism, which relates loop measures and complex Gaussian free fields.
60J05 Discrete-time Markov processes on general state spaces
Full Text: DOI Euclid arXiv
[1] E. B. Dynkin (1983). Local times and quantum fields. Seminar on Stochastic Processes, 64-84. Birkhauser.
[2] A. Kassel, T. Lévy (2016). Covariant Symanzik identities. Preprint available:arXiv:1607.05201.
[3] Y. Le Jan (2008). Dynkin’s isomorphism without symmetry. Stochastic analysis in mathematical physics. ICM 2006 Satellite conference in Lisbon. 43-53 World Scientific.
[4] Y. Le Jan (2011). Markov Paths, Loops and Fields, Lecture Notes in Mathematics 2026, Springer-Verlag.
[5] G. F. Lawler (2018). Topics in loop measures and the loop-erased walk. Probability Surveys15, 28-101. · Zbl 1390.60301
[6] G. F. Lawler, V. Limic (2010). Random walk: a modern introduction, volume 123 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010. · Zbl 1210.60002
[7] G. F. Lawler, J. Perlman (2015). Loop measures and the Gaussian free field, in Random Walks, Random Fields, and Disordered Systems, Lecture Notes in Mathematics 2144, M. Biskup, J. Černý, R. Kotecký, ed., Springer-Verlag, 211-235. · Zbl 1338.60234
[8] G. F. Lawler, O. Schramm, W. Werner (2003). Conformal restriction: the chordal case (electronic). J. Am. Math. Soc. 16(4), 917-955. · Zbl 1030.60096
[9] G. F. Lawler, J. A. Trujillo Ferreras (2007). Random walk loop soup. Trans. Amer. Math. Soc., 359(2): 767-787 (electronic). · Zbl 1120.60037
[10] G. F. Lawler, W. Werner (2004). The Brownian loop soup. Probab. Theory Related Fields, 128(4): 565-588. · Zbl 1049.60072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.