Venet, Nil Nonexistence of fractional Brownian fields indexed by cylinders. (English) Zbl 1466.60081 Electron. J. Probab. 24, Paper No. 75, 26 p. (2019). Summary: We show in this article that there exists no \(H\)-fractional Brownian field indexed by the cylinder \(\mathbb{S} ^{1} \times ]0,\varepsilon [\) endowed with its product distance \(d\) for any \(\varepsilon >0\) and \(H>0\). This is equivalent to say that \(d^{2H}\) is not a negative definite kernel, which also leaves us without a proof that many classical stationary kernels, such that the Gaussian and exponential kernels, are positive definite kernels – or valid covariances – on the cylinder.We generalise this result from the cylinder to any Riemannian Cartesian product with a minimal closed geodesic. We also investigate the case of the cylinder endowed with a distance asymptotically close to the product distance in the neighbourhood of a circle.As a consequence of our result, we show that the set of \(H\) such that \(d^{2H}\) is negative definite behaves in a discontinuous way with respect to the Gromov-Hausdorff convergence on compact metric spaces.These results extend our comprehension of kernel construction on metric spaces, and in particular call for alternatives to classical kernels to allow for Gaussian modelling and kernel method learning on cylinders. Cited in 4 Documents MSC: 60G22 Fractional processes, including fractional Brownian motion 60G60 Random fields Keywords:positive definite kernel; valid covariance; fractional Brownian motion; random field; Riemannian manifold × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic analysis on semigroups, Graduate Texts in Mathematics, vol. 100, Springer-Verlag, New York, 1984, Theory of positive definite and related functions. · Zbl 0619.43001 [2] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. · Zbl 0981.51016 [3] S. Cohen and M. A. Lifshits, Stationary Gaussian random fields on hyperbolic spaces and on Euclidean spheres, ESAIM Probab. Stat. 16 (2012), 165-221. · Zbl 1275.60038 [4] M. P. do Carmo, Differential geometry of curves & surfaces, Dover Publications, Inc., Mineola, NY, 2016, Revised & updated second edition of [MR-0394451]. · Zbl 0326.53001 [5] J. Faraut and K. Harzallah, Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 3, xiv, 171-217. · Zbl 0265.43013 [6] A. Feragen, F. Lauze, and S. Hauberg, Geodesic exponential kernels: When curvature and linearity conflict, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015. [7] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, third ed., Universitext, Springer-Verlag, Berlin, 2004. · Zbl 1068.53001 [8] R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 121-226. · Zbl 0157.24902 [9] J. Istas, Spherical and hyperbolic fractional Brownian motion, Electron. Comm. Probab. 10 (2005), 254-262. · Zbl 1112.60029 · doi:10.1214/ECP.v10-1166 [10] J. Istas, Karhunen-Loève expansion of spherical fractional Brownian motions, Statist. Probab. Lett. 76 (2006), no. 14, 1578-1583. · Zbl 1096.60019 · doi:10.1016/j.spl.2006.03.019 [11] J. Istas, Manifold indexed fractional fields, ESAIM Probab. Stat. 16 (2012), 222-276. · Zbl 1275.60041 [12] A. Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, vol. 116, American Mathematical Society, Providence, RI, 2005. · Zbl 1082.52002 [13] P. Lévy, Le mouvement Brownien fonction d’un point de la sphère de Riemann., Rend. Circ. Mat. Palermo, II. Ser. 8 (1960), 297-310 (French). · Zbl 0100.34103 [14] P. Lévy, Processus stochastiques et mouvement brownien, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux, 1992, Followed by a note by M. Loève, Reprint of the second (1965) edition. [15] M. A. Lifshits, Lectures on Gaussian processes, SpringerBriefs in Mathematics, Springer, Heidelberg, 2012. · Zbl 1248.60002 [16] M. A. Lifshits, The representation of Lévy fields by indicators, Teor. Veroyatnost. i Primenen. 24 (1979), no. 3, 624-628. · Zbl 0438.60045 [17] B. B. Mandelbrot, Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands, Proc. Nat. Acad. Sci. U. S. A. 72 (1975), no. 10, 3825-3828. [18] B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422-437. · Zbl 0179.47801 [19] G. M. Molchan, Multiparametric Brownian motion on symmetric spaces, Probability theory and mathematical statistics, Vol. II (Vilnius, 1985), VNU Sci. Press, Utrecht, 1987, pp. 275-286. · Zbl 0653.58045 [20] E. A. Morozova and N. N. Chentsov, Lévy’s random fields, Teor. Verojatnost. i Primenen 13 (1968), 152-155. · Zbl 0196.18702 [21] B. Schölkopf and A. J. Smola, Learning with kernels: support vector machines, regularization, optimization, and beyond, MIT press, 2002. [22] S. Takenaka, Representation of Euclidean random field, Nagoya Math. J. 105 (1987), 19-31. · Zbl 0594.60054 [23] N. Venet, On the existence of fractional Brownian fields indexed by manifolds with closed geodesics, arXiv:1612.05984 · Zbl 1466.60081 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.