Sur la transcendance de la série formelle \(\Pi\) . (On the transcendence of formal power series \(\Pi\) ). (French) Zbl 0709.11067

Let \({\mathbb{A}}={\mathbb{F}}_ q[x]\) where \({\mathbb{F}}_ q\) is the finite field with q elements. There is a very well-known analogy between the P.I.D. \({\mathbb{A}}\) and the usual integers \({\mathbb{Z}}\). This analogy even extends to the existence of special transcendental functions. Indeed, let R be either \({\mathbb{A}}\) or \({\mathbb{Z}}\) and let \({\mathbb{P}}\) be the subset of positives (for \({\mathbb{Z}})\) or monics (for \({\mathbb{A}})\). We formally put \(\zeta_ R(s)=\sum_{a\in {\mathbb{P}}}a^{-s};\) we consider \(\zeta_ R\) as a function on positive integers where it converges absolutely except for a pole at \(s=1\) for \({\mathbb{Z}}\). Moreover, considering R as a “lattice”, we are led to the construction of “exponential functions”; in both cases rationality considerations force the introduction of a constant “\(\pi\) ”.
Let \(\alpha\) be the number of units in R and call a positive integer “R- even” if it is divisible by \(\alpha\). Then one knows that \(\zeta_ R(i)/\pi^ i\) is in the quotient field of R for R-even integers. (This is due to Euler for \({\mathbb{Z}}\); for \({\mathbb{A}}\) it was shown by Carlitz in the 30’s and independently rediscovered by the present author in the 70’s.)
The number \(\pi\) is well-known to be transcendental when \(R={\mathbb{Z}}\). When \(R={\mathbb{A}}\), the result was first established by L. I. Wade. The purpose of the present article is to use the work of Christol, Kamae, Mendès France and Rauzy to give an elementary proof of this last theorem.
Reviewer: D.Goss


11R58 Arithmetic theory of algebraic function fields
11J81 Transcendence (general theory)
11T55 Arithmetic theory of polynomial rings over finite fields
14G15 Finite ground fields in algebraic geometry
Full Text: DOI Numdam EuDML


[1] Allouche, J.-P.Somme des chiffres et transcendance, Bull. Soc. Math. France110 (1982), 279-285. · Zbl 0508.10022
[2] Allouche, J.-P.Automates finis en théorie des nombres, Expo. Math.5 (1987), 239-266. · Zbl 0641.10041
[3] Allouche, J.-P.Note sur un article de Sharif et Woodcock, Sém. de Théorie des Nombres de Bordeaux 1,1 2ème série (1989), 163-187. · Zbl 0714.12006
[4] Allouche, J.-P., Bétréma, J. et Shallit, J.Sur des points fixes de morphismes d’un monoïde libre, R.A.I.R.O, Informatique théorique et applications23,3 (1989), 235-249.. · Zbl 0691.68065
[5] CARLITZ On certain, L.functions connected with polynomials in a Galois field, Duke Math. J., 1 (1935), 137-168.
[6] Carlitz, L.Some topics in the arithmetic of polynomials, Bull. Amer. Math. Soc.48 (1942), 679-691. · Zbl 0063.00708
[7] Chérif, H.Mesure d’irrationalité des valeurs de la fonction zéta de Carlitz sur F2[T], Thèse (1987), Bordeaux. Voir aussi Chérif, H. et Mathan, B. de, Mesure d’irrationalité de la valeur en 1 de la fonction zéta de Carlitz relative à F2 [T], C.R. Acad. Sci. Paris305, Série I (1987), 761-763. · Zbl 0635.10032
[8] Christol, G., Kamae, T., Mendès France, M. et Rauzy, G.Suites algébriques, automates et substitutions, Bull. Soc. Math. France108 (1980), 401-419. · Zbl 0472.10035
[9] Cobham, A.On the base dependence of sets of numbers recognisable by finite automata, Math. Systems Theory3 (1969), 186-192. · Zbl 0179.02501
[10] Cobham, A.Uniform tag sequences, Math. Systems Theory6 (1972), 164-192. · Zbl 0253.02029
[11] Damamme, G.Irrationalité de ζ(s) dans le corps des séries formelles Fq ((1/t)), C.R. Math. Rep. Acad. Sci. Canada9,5 (1987), 207-212. · Zbl 0634.10034
[12] Damamme, G. et Hellegouarch, Y.Propriétés de transcendance des valeurs de la fonction zéta de Carlitz, C.R. Acad. Sci. Paris307, Série I (1988), 635-637. · Zbl 0658.10039
[13] Hellegouarch, Y.Propriétés arithmétiques des séries formelles à coefficients dans un corps fini, C.R. Math. Rep. Acad. Sci. Canada8,2 (1986), 115-120. · Zbl 0603.12011
[14] Hellegouarch, Y.Notions de base pour l’arithmétique de Fq((1/t)), Can. J. Math.40,4 (1988), 817-832. · Zbl 0647.12009
[15] Wade, L.I.Certain quantities transcendental over GF(pn, x), Duke Math. J., 8 (1941), 701-720. · Zbl 0063.08101
[16] Wade, L.I.Certain quantities transcendental over GF(pn, x), II, Duke Math. J., 10 (1943),587-591. · Zbl 0063.08102
[17] Wade, L.I.Two types of function fields transcendental numbers, Duke Math. J., 1,1 (1944), 755-758. · Zbl 0063.08103
[18] Wade, L.I.Remarks on the Carlitz ψ-function, Duke Math. J., 13 (1946), 71-78. · Zbl 0063.08106
[19] Wade, L.I.Transcendence properties of the Carlitz ψ-function, Duke Math. J., 13 (1946), 79-85. · Zbl 0063.08107
[20] Yu, J.Transcendence and Drinfeld modules, Inv. Math.83 (1986), 507-517. · Zbl 0586.12010
[21] Yu, J.Transcendence and Drinfeld modules, II, Math. Res. Cent. Rep. (1986), 172-181, Symp. Taipei/Taiwan. · Zbl 0644.12005
[22] Yu, J. in Zbl. Math. 644.12005 · Zbl 0644.12005
[23] Chérif, H.Mesure d’irrationalité de valeurs de la fonction zéta de Carlitz sur Fq [T], C.R. Acad. Sci.Paris310, Série I (1990), 23-26. · Zbl 0699.12022
[24] Damamme, G.Transcendance de la fonction zéta de Carlitz par la méthode de Wade, Thèse (1990), Caen.
[25] Geijsel, J.M.Transcendence in fields of positive characteristic, Thesis (1978), Amsterdam. · Zbl 0422.10025
[26] Gekeler, E.-U.On power sums of polynomials over finite fields, J. Numb. Theory30,1 (1988), 11-26. · Zbl 0656.12007
[27] Thakur, D.S.Number fields and function fields (zeta and gamma functions at all primes), p-adic analysis, Proc. Conf. Houthalen/Belg (1986), 149-157. · Zbl 0658.12005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.