zbMATH — the first resource for mathematics

Riesz transforms and the wave equation for the Hermite operator. (English) Zbl 0709.35068
Let \(A_ j=-(d/dx_ j)+x_ j\) and \(A^*_ j=d/dx_ j+x_ j\) be the creation and the annihilation operators and \(H=(-\Delta +| x|^ 2)=(1/2)\sum^{n}_{j=1}(A_ jA^*_ j+A^*_ jA_ j)\) be the Hermite operator. Analogous to the classical Riesz transforms we define \(R_ j=H^{-1/2}A_ j\) and \(R^*_ j=H^{-1/2}A^*_ j\) and prove that they are bounded on \(L^ p({\mathbb{R}}^ n)\), \(1<p<\infty\). We also study the Cauchy problem for the wave equation \(\partial^ 2_ tu=Hu\) and prove certain \(L^ p-L^ 2\) mapping properties of the solution operators \(H^{-1/2}\sin (tH^{1/2})\) and \(\cos (tH^{1/2})\).
Reviewer: S.Thangavelu

35L05 Wave equation
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35L15 Initial value problems for second-order hyperbolic equations
Full Text: DOI
[1] DOI: 10.1215/S0012-7094-87-05508-6 · Zbl 0667.42007 · doi:10.1215/S0012-7094-87-05508-6
[2] DOI: 10.1007/BF02073769 · Zbl 0515.42023 · doi:10.1007/BF02073769
[3] DOI: 10.1016/0022-1236(80)90035-X · Zbl 0458.42008 · doi:10.1016/0022-1236(80)90035-X
[4] Peetre J., Mathematiche (Catania) 27 pp 301– (1972)
[5] DOI: 10.1016/0022-1236(87)90064-4 · Zbl 0622.42010 · doi:10.1016/0022-1236(87)90064-4
[6] Stein E., Introduction to Fourier Analysis on the Euclidean spaces (1971)
[7] DOI: 10.1090/S0002-9947-1970-0256219-1 · doi:10.1090/S0002-9947-1970-0256219-1
[8] Szego G., Orthogonal polynomials (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.