×

Rigidity of centralizers of diffeomorphisms. (English) Zbl 0709.58022

Summary: We show that a large class of smooth diffeomorphisms in every compact boundaryless manifold have trivial centralizers, i.e., the diffeomorphisms commute only with their own powers.

MSC:

37C70 Attractors and repellers of smooth dynamical systems and their topological structure
37C10 Dynamics induced by flows and semiflows
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] B. ANDERSON , Diffeomorphisms with Discrete Centralizer (Topology, Vol. 15, 1976 , pp. 143-147). MR 53 #6635 | Zbl 0338.58005 · Zbl 0338.58005
[2] V. ARNOLD , Chapitres supplémentaires de la théorie des équations différentielles ordinaires , Ed. Mir, 1980 . MR 83a:34003 | Zbl 0455.34001 · Zbl 0455.34001
[3] M. HERMAN , Sur la conjugation différentiable des difféomorphismes du cercle à des rotations (Publications Math., Vol. 49, 1979 , pp. 5-234). Numdam | MR 81h:58039 | Zbl 0448.58019 · Zbl 0448.58019
[4] N. KOPELL , Commuting Diffeomorphisms, Global Analysis (Am. Math. Soc. Proc. Symp. Pure Math., Vol. 14, 1970 , pp. 165-184). MR 42 #5285 | Zbl 0225.57020 · Zbl 0225.57020
[5] S. NEWHOUSE , J. PALIS and F. TAKENS , Bifurcations and Stability of Families of Diffeomorphisms (Publications Math. I.H.E.S., Vol. 53, 1983 , pp. 5-72). Numdam | MR 84g:58080 | Zbl 0518.58031 · Zbl 0518.58031
[6] S. NEWHOUSE , Lectures on Dynamical Systems , Dyn. Syst. C.I.M.E., Birkhöuser, 1980 . Zbl 0444.58001 · Zbl 0444.58001
[7] J. PALIS , Rigidity of Centralizers of Diffeomorphisms and Structural Stability of Suspended Foliations [Proc. Symp. PUC-Rio de Janeiro (Lectures Notes in Math., No. 652, Springer-Verlag, 1978 , pp. 114-121)]. MR 80b:58040 | Zbl 0382.57013 · Zbl 0382.57013
[8] J. PALIS and W. DE MELO , Geometric Theory of Dynamical Systems , Springer-Verlag, 1982 . MR 84a:58004 | Zbl 0491.58001 · Zbl 0491.58001
[9] J. PALIS and J. C. YOCCOZ , Centralizers of Anosov Diffeomorphisms on Tori (Ann. Sc. de l’E.N.S., this volume). Numdam | Zbl 0675.58029 · Zbl 0675.58029
[10] J. PALIS and J. C. YOCCOZ , Differentiable Conjugacies of Morse-Smale Diffeomorphisms (to appear). · Zbl 0726.58027
[11] J. ROBBIN , A Structural Stability Theorem (Annals of Math., Vol. 94, 1971 , pp. 447-493). MR 44 #4783 | Zbl 0224.58005 · Zbl 0224.58005
[12] C. ROBINSON , Structural Stability of C1 Diffeomorphisms (J. Diff. Equations, Vol. 22, 1976 , pp. 28-73). MR 57 #14051 | Zbl 0343.58009 · Zbl 0343.58009
[13] P. SAD , Centralizers of Vector Fields (Topology, Vol. 18, 1979 , pp. 97-104). MR 81c:58053 | Zbl 0415.58016 · Zbl 0415.58016
[14] M. SHUB , Global Stability of Dynamical Systems , Springer-Verlag, 1987 . MR 87m:58086 | Zbl 0606.58003 · Zbl 0606.58003
[15] S. SMALE , Differentiable Dynamical Systems (Bull. Am. Math. Soc., Vol. 73, 1976 , pp. 747-817). Article | MR 37 #3598 | Zbl 0202.55202 · Zbl 0202.55202
[16] S. SMALE , The \Omega -Stability Theorem, Global Analysis (Am. Math. Soc. Proc. Symp. Pure Math., Vol. 14, 1970 , pp. 289-297). MR 42 #6852 | Zbl 0205.54104 · Zbl 0205.54104
[17] J. C. YOCCOZ , Centralisateurs et conjugaison différentiable des difféomorphismes du cercle (Thèses Doctorat d’État, Univ. de Paris Sud, 1985 and Astérisque (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.