×

Gluing construction of compact \(\mathrm{Spin}(7)\)-manifolds. (English) Zbl 1422.53039

Summary: We give a differential-geometric construction of compact manifolds with holonomy \(\mathrm{Spin}(7)\) which is based on Joyce’s second construction of compact \(\mathrm{Spin}(7)\)-manifolds and Kovalev’s gluing construction of compact \(G_2\)-manifolds. We provide several examples of compact \(\mathrm{Spin}(7)\)-manifolds, at least one of which is new. Here in this paper we need orbifold admissible pairs \((\overline{X}, D)\) consisting of a compact Kähler orbifold \(\overline{X}\) with isolated singular points modelled on \(\mathbb{C}^4/\mathbb{Z}_4\), and a smooth anticanonical divisor \(D\) on \(\overline{X}\). Also, we need a compatible antiholomorphic involution \(\sigma\) on \(\overline{X}\) which fixes the singular points on \(\overline{X}\) and acts freely on the anticanoncial divisor \(D\). If two orbifold admissible pairs \((\overline{X}_1, D_1)\), \((\overline{X}_2, D_2)\) and compatible antiholomorphic involutions \(\sigma_i\) on \(\overline{X}_i\) for \(i=1,2\) satisfy the gluing condition, we can glue \((\overline{X}_1 \backslash D_1)/\langle\sigma_1\rangle\) and \((\overline{X}_2 \backslash D_2)/\langle\sigma_2\rangle\) together to obtain a compact Riemannian 8-manifold \((M, g)\) whose holonomy group \(\mathrm{Hol}(g)\) is contained in \(\mathrm{Spin}(7)\). Furthermore, if the \(\widehat{A}\)-genus of \(M\) equals 1, then \(M\) is a compact \(\mathrm{Spin}(7)\)-manifold, i.e. a compact Riemannian manifold with holonomy \(\mathrm{Spin}(7)\).

MSC:

53C29 Issues of holonomy in differential geometry
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
14J32 Calabi-Yau manifolds (algebro-geometric aspects)

References:

[1] R. Bott and L. Tu, Differential forms in algebraic topology, Graduate Texts in Math., 82, Springer-Verlag, New York-Berlin, 1982. · Zbl 0496.55001
[2] R. Clancy, New examples of compact manifolds with holonomy \(\operatorname{Spin}(7)\), Ann. Global Anal. Geom., 40 (2011), 203-222. · Zbl 1245.53047 · doi:10.1007/s10455-011-9254-4
[3] V. I. Danilov and A. G. Khovanskii, Newton polyhedra and an algorithm for computing Hodge-Deligne numbers, Math., USSR-Izv, 29 (1987), 279-298. · Zbl 0669.14012 · doi:10.1070/IM1987v029n02ABEH000970
[4] M. Doi, Gluing construction of compact complex surface with trivial canonical bundle, J. Math. Soc. Japan, 61 (2009), 853-884. · Zbl 1178.32013 · doi:10.2969/jmsj/06130853
[5] M. Doi and N. Yotsutani, Doubling construction of Calabi-Yau threefolds, New York J. Math., 20 (2014), 1203-1235. · Zbl 1314.53081
[6] M. Doi and N. Yotsutani, Doubling construction of Calabi-Yau fourfolds from toric Fano fourfolds, Commun. Math. Stat., 3 (2015), 423-447. · Zbl 1336.53057 · doi:10.1007/s40304-015-0066-x
[7] A. R. Fletcher, Working with weighted complete intersections, Explicit birational geometry of 3-folds, London Math. Society Lecture Note Series, 281, Cambridge University Press, Cambridge 2000, 101-173. · Zbl 0960.14027
[8] R. Harvey, Spinors and Calibrations, Perspectives in Mathematics, 9, Academic Press, San Diego, 1990. · Zbl 0694.53002
[9] M. Haskins, H.-J. Hein and J. Nördstrom, Asymptotically cylindrical Calabi-Yau manifolds, J. Differential Geom. Math., 101 (2015), 213-265. · Zbl 1332.32028
[10] D. D. Joyce, Compact 8-manifolds with holonomy \(\operatorname{Spin}(7)\), Invent. Math., 123 (1996), 507-552. · Zbl 0858.53037
[11] D. D. Joyce, A new construction of compact 8-manifolds with holonomy \(\operatorname{Spin}(7)\), J. Differ. Geom., 53 (1999), 89-130. · Zbl 1040.53062
[12] D. D. Joyce, Compact Manifolds with Special Holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. · Zbl 1027.53052
[13] A. Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math., 565 (2003), 125-160. · Zbl 1043.53041
[14] A. Kovalev and N.-H. Lee, \(K3\) surfaces with non-symplectic involution and compact irreducible \(G_2\)-manifolds, Math. Proc. Camb. Phil. Soc., 151 (2011), 193-218. · Zbl 1228.53064
[15] S. M. Salamon, Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Math., 201, Longman, Harlow, 1989. · Zbl 0685.53001
[16] G. Tian and S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature, I, J. Amer. Math. Soc., 3 (1990), 579-609. · Zbl 0719.53041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.