Shibata, Takahiro Ample canonical heights for endomorphisms on projective varieties. (English) Zbl 1442.37124 J. Math. Soc. Japan 71, No. 2, 599-634 (2019). Summary: We define an “ample canonical height” for an endomorphism on a projective variety, which is essentially a generalization of the canonical heights for polarized endomorphisms introduced by Call-Silverman. We formulate a dynamical analogue of the Northcott finiteness theorem for ample canonical heights as a conjecture, and prove it for endomorphisms on varieties of small Picard numbers, abelian varieties, and surfaces. As applications, for the endomorphisms which satisfy the conjecture, we show the non-density of the set of preperiodic points over a fixed number field, and obtain a dynamical Mordell-Lang type result on the intersection of two Zariski dense orbits of two endomorphisms on a common variety. Cited in 3 Documents MSC: 37P30 Height functions; Green functions; invariant measures in arithmetic and non-Archimedean dynamical systems 14G05 Rational points Keywords:canonical height; dynamical degree × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] [Ame11] E. Amerik, Existence of non-preperiodic algebraic points for a rational self-map of infinite order, Math. Res. Lett., 18 (2011), 251-256. · Zbl 1241.14011 · doi:10.4310/MRL.2011.v18.n2.a5 [2] [BGT10] J. P. Bell, D. Ghioca and T. J. Tucker, The dynamical Mordell-Lang problem for étale maps, Amer. J. Math., 132 (2010), 1655-1675. · Zbl 1230.37112 [3] [BGT16] J. P. Bell, D. Ghioca and T. J. Tucker, The dynamical Mordell-Lang conjecture, Mathematical Surveys and Monographs, 210, American Mathematical Society, Providence, RI, 2016. · Zbl 1362.11001 [4] [CaSi93] G. S. Call and J. H. Silverman, Canonical heights on varieties with morphisms, Compositio Math., 89 (1993), 163-205. · Zbl 0826.14015 [5] [Fuj02] Y. Fujimoto, Endomorphisms of Smooth Projective 3-folds with nonnegative Kodaira dimension, Publ. RIMS, Kyoto Univ., 38 (2002), 33-92. · Zbl 1053.14049 · doi:10.2977/prims/1145476416 [6] [JoRe18] M. Jonsson and P. Reschke, On the complex dynamics of birational surface maps defined over number fields, J. Reine Angew. Math., 744 (2018), 275-297. · Zbl 1405.37098 [7] [JoWu12] M. Jonsson and E. Wulcan, Canonical heights for plane polynomial maps of small topological degree, Math. Res. Lett., 19 (2012), 1207-1217. · Zbl 1302.37066 · doi:10.4310/MRL.2012.v19.n6.a3 [8] [KaSi14] S. Kawaguchi and J. H. Silverman, Examples of dynamical degree equals arithmetic degree, Michigan Math. J., 63 (2014), 41-63. · Zbl 1309.37084 · doi:10.1307/mmj/1395234358 [9] [KaSi16a] S. Kawaguchi and J. H. Silverman, On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math., 713 (2016), 21-48. · Zbl 1393.37115 [10] [KaSi16b] S. Kawaguchi and J. H. Silverman, Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc., 368 (2016), 5009-5035. · Zbl 1391.37078 · doi:10.1090/tran/6596 [11] [Kaw06] S. Kawaguchi, Canonical height functions for affine plane automorphisms, Math. Ann., 335 (2006), 285-310. · Zbl 1101.11019 · doi:10.1007/s00208-006-0750-y [12] [Kaw08] S. Kawaguchi, Projective surface automorphisms of positive topological entropy from an arithmetic viewpoint, Amer. J. Math., 130 (2008), 159-186. · Zbl 1144.14019 · doi:10.1353/ajm.2008.0008 [13] [Kaw13] S. Kawaguchi, Local and global canonical height functions for affine space regular automorphisms, Algebra Number Theory, 7 (2013), 1225-1252. · Zbl 1302.37067 · doi:10.2140/ant.2013.7.1225 [14] [Lee13] C. Lee, An upper bound for height for regular affine automorphisms on \(\mathbb{A}^n\), Math. Ann., 355 (2013), 1-16. · Zbl 1330.11045 [15] [LOP17] V. Lazić, K. Oguiso and T. Peternell, Automorphisms of Calabi-Yau threefolds with Picard number three, Adv. Stud. Pure Math., 74 (2017), 279-290. · Zbl 1388.14117 [16] [LOP18] V. Lazić, K. Oguiso and T. Peternell, The Morrison-Kawamata cone conjecture and abundance on Ricci flat manifolds, Uniformization, Riemann-Hilbert correspondence, Calabi-Yau manifolds & Picard-Fuchs equations, Adv. Lect. Math. (ALM), 42, Int. Press, Somerville, MA, 2018, 157-185. · Zbl 1409.32010 [17] [MSS18] Y. Matsuzawa, K. Sano and T. Shibata, Arithmetic degrees and dynamical degrees of endomorphisms on surfaces, Algebra Number Theory, 12 (2018), 1635-1657. · Zbl 1423.14163 · doi:10.2140/ant.2018.12.1635 [18] [Nak02] N. Nakayama, Ruled surfaces with non-trivial surjective endomorphisms, Kyushu J. Math., 56 (2002), 433-446. · Zbl 1049.14029 · doi:10.2206/kyushujm.56.433 [19] [San18] K. Sano, Growth rate of ample heights and the dynamical Mordell-Lang type conjecture, Int. J. Number Theory, 14 (2018), 2673-2685. · Zbl 1423.37072 · doi:10.1142/S1793042118501610 [20] [Sil14] J. H. Silverman, Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems, 34 (2014), 647-678. · Zbl 1372.37093 [21] [Sil17] J. H. Silverman, Arithmetic and dynamical degrees on abelian varieties, J. Théor. Nombres Bordeaux, 29 (2017), 151-167. · Zbl 1416.11091 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.