×

zbMATH — the first resource for mathematics

A Kalman filter method for estimation and prediction of space-time data with an autoregressive structure. (English) Zbl 1422.62285
Summary: We propose a new Kalman filter algorithm to provide a formal statistical analysis of space-time data with an autoregressive structure. The Kalman filter technique allows to capture the temporal dependence as well as the spatial correlation structure through state-space equations, and it is aimed to perform statistical inference in terms of both parameter estimation and prediction at unobserved locations. We put in relevance the nugget effect at the observation equation. We test our procedure and compare it with classical kriging prediction via an intensive simulation study. We show that the Kalman filter is superior in both the estimation, without using a plug-in approach, and prediction for spatio-temporal data, providing a suitable formal procedure for the statistical analysis of space-time data. Finally, an application to the prediction of daily air temperature data in some regions of southern Chile is presented.
MSC:
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M20 Inference from stochastic processes and prediction
62P35 Applications of statistics to physics
86A32 Geostatistics
62H11 Directional data; spatial statistics
62P12 Applications of statistics to environmental and related topics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amisigo, B.; Van De Giesen, N., Using a spatio-temporal dynamic state-space model with the EM algorithm to patch gaps in daily riverflow series, Hydrol. Earth Syst. Sci. Discuss., 9, 3, 209-224, (2005)
[2] Anderson, J. L., An ensemble adjustment kalman filter for data assimilation, Mon. Weather Rev., 129, 12, 2884-2903, (2001)
[3] Banerjee, S.; Carlin, B. P.; Gelfand, A. E., Hierarchical Modeling and Analysis for Spatial Data, (2014), Crc Press
[4] Barton, M. J.; Robinson, P. A.; Kumar, S.; Galka, A.; Durrant-Whyte, H. F.; Guivant, J.; Ozaki, T., Evaluating the performance of kalman-filter-based eeg source localization, IEEE Trans. Biomed. Eng., 56, 1, 122-136, (2009)
[5] Bevilacqua, M.; Faouzi, T.; Furrer, R.; Porcu, E., Estimation and prediction using generalized wendland covariance functions under fixed domain asymptotics, Ann. Stat., 47, 2, 828-856, (2019) · Zbl 1418.62365
[6] Brockwell, P. J.; Davis, R. A., Time Series: Theory and Methods, (1991), Springer: Springer New York · Zbl 0709.62080
[7] Cameletti, M.; Lindgren, F.; Simpson, D.; Rue, H., Spatio-temporal modeling of particulate matter concentration through the spde approach, AStA Adv. Stat. Anal., 97, 2, 109-131, (2013) · Zbl 1443.62401
[8] Chan, N. H.; Palma, W., State space modeling of long-memory processes, Ann. Statist., 26, 719-740, (1998) · Zbl 0929.62091
[9] Cressie, N., Statistics for Spatial Data, (1993), John Wiley & Sons.
[10] Cressie, N.; Shi, T.; Kang, E. L., Fixed rank filtering for spatio-temporal data, J. Comput. Graph. Stat., 19, 3, 724-745, (2010)
[11] Cressie, N.; Wikle, C. K., Space-time kalman filter, Wiley StatsRef Stat. Ref. Online, (2014)
[12] Cressie, N.; Wikle, C. K., Statistics for Spatio-temporal Data, (2015), John Wiley & Sons · Zbl 1273.62017
[13] Diggle, P.; Ribeiro, P. J., Model-based Geostatistics. Springer Series in Statistics, (2007), Springer
[14] Durbin, J.; Koopman, S. J., Time Series Analysis by State Space Methods, Oxford Statistical Science Series, (2001), Oxford University Press: Oxford University Press Oxford · Zbl 0995.62504
[15] Fassò, A.; Cameletti, M., The em algorithm in a distributed computing environment for modelling environmental space-time data, Environ. Model. Softw., 24, 9, 1027-1035, (2009)
[16] Fassò, A.; Cameletti, M., A unified statistical approach for simulation, modeling, analysis and mapping of environmental data, Simulation, 86, 3, 139-153, (2010)
[17] Ferreira, G.; Mateu, J.; Porcu, E., Spatio-temporal analysis with short-and long-memory dependence: a state-space approach, Test, 27, 1-25, (2017)
[18] Ferreira, G.; Rodríguez, A.; Lagos, B., Kalman filter estimation for a regression model with locally stationary errors, Comput. Stat. Data Anal., 62, 52-69, (2013) · Zbl 1348.62133
[19] Gillijns, S.; Mendoza, O. B.; Chandrasekar, J.; De Moor, B.; Bernstein, D.; Ridley, A., What is the ensemble kalman filter and how well does it work?, (2006 American Control Conference, (2006), IEEE), 6-pp.
[20] Gneiting, T.; Genton, M. G.; Guttorp, P., Geostatistical space-time models, stationarity, separability, and full symmetry, Monogr. Stat. Appl. Probab., 107, 151-175, (2006) · Zbl 1282.86019
[21] Grassi, S.; de Magistris, P. S., When long memory meets the kalman filter: A comparative study, Comput. Stat. Data Anal., 76, 301-319, (2014) · Zbl 06983981
[22] Grewal, M. S., Kalman Filtering, (2011), Springer
[23] Grewal, M. S.; Weill, L. R.; Andrews, A. P., Global positioning systems, inertial navigation, and integration, (2007), John Wiley & Sons
[24] Harvey, A. C., Forecasting Structural Time Series and the Kalman Filter, (1992), Cambridge University Press: Cambridge University Press Cambridge
[25] Hefley, T. J.; Broms, K. M.; Brost, B. M.; Buderman, F. E.; Kay, S. L.; Scharf, H. R.; Tipton, J. R.; Williams, P. J.; Hooten, M. B., The basis function approach for modeling autocorrelation in ecological data, Ecology, 98, 3, 632-646, (2017)
[26] Huang, H.; Cressie, N., Spatio-temporal prediction of snow water equivalent using the kalman filter, Comput. Stat. Data Anal., 22, 159-175, (1996)
[27] Hughes, J. P.; Guttorp, P.; Charles, S. P., A non-homogeneous hidden markov model for precipitation occurrence, J. R. Stat. Soc. Ser. C, 48, 1, 15-30, (1999) · Zbl 0920.62141
[28] Kalman, R. E., A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 1, 35-45, (1960)
[29] Katzfuss, M.; Cressie, N., Spatio-temporal smoothing and em estimation for massive remote-sensing data sets, J. Time Ser. Anal., 32, 4, 430-446, (2011) · Zbl 1294.62119
[30] Li, H.-X.; Qi, C., Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems: a Time/space Separation Based Approach, Vol. 50, (2011), Springer Science & Business Media
[31] Mardia, K. V.; Goodall, C.; Redfern, E. J.; Alonso, F. J., The kriged kalman filter, Test, 7, 2, 217-282, (1998) · Zbl 0935.62107
[32] Mardia, K. V.; Marshall, R., Maximum likelihood estimation of models for residual covariance in spatial regression, Biometrika, 71, 135-146, (1984) · Zbl 0542.62079
[33] Matérn, B., Spatial Variation. Vol. 36, (2013), Lecture Notes in Statistics, Springer Science & Business Media
[34] Matheron, G., Theory of regionalized variables and its applications, Cah. Cent. Morrphologie Math. Eisle Natl. Superieure des Mines de Paris., 5, 211, (1971)
[35] Maybeck, P. S., Square root filtering, Stoch. Models Estimation Control, 1, 368-409, (1979)
[36] Meinhold, R. J.; Singpurwalla, N. D., Understanding the kalman filter, Amer. Statist., 37, 2, 123-127, (1983)
[37] Montero, J. M.; Fernández-Avilés, G.; Mateu, J., Spatial and Spatio-Temporal Geostatistical Modeling and Kriging. Vol. 998, (2015), John Wiley & Sons.
[38] Naveau, P.; Genton, M. G.; Shen, X., A skewed kalman filter, J. Multivariate Anal., 94, 2, 382-400, (2005) · Zbl 1066.62091
[39] Padoan, S. A.; Bevilacqua, M., Analysis of random fields using comprandfld, J. Stat. Softw., 63, 9, 1-27, (2015)
[40] Prado, R.; West, M., Time Series: Modeling, Computation, and Inference, (2010), CRC Press · Zbl 1245.62105
[41] Rehman, M. J.; Dass, S. C.; Asirvadam, V. S., Nonlinear dynamical system identification using unscented kalman filter, (AIP Conference Proceedings. Vol. 1787, (2016), AIP Publishing), 020003
[42] Rezaie, J.; Eidsvik, J., Kalman filter variants in the closed skew normal setting, Comput. Statist. Data Anal., 75, 1-14, (2014) · Zbl 06983940
[43] Rue, H.; Martino, S.; Chopin, N., Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations, J. R. Stat. Soc. Ser. B Stat. Methodol., 71, 2, 319-392, (2009) · Zbl 1248.62156
[44] Sahu, S. K., Hierarchical bayesian models for space-time air pollution data, (Handbook of Statistics, Vol. 30, (2012), Elsevier), 477-495
[45] Stroud, J. R.; Stein, M. L.; Lesht, B. M.; Schwab, D. J.; Beletsky, D., An ensemble kalman filter and smoother for satellite data assimilation, J. Am. Stat. Assoc., 105, 491, 978-990, (2010) · Zbl 1390.62329
[46] Thioulouse, J.; Royet, J.; Ploye, H.; Houllier, F., Evaluation of the precision of systematic sampling: nugget effect and covariogram modelling, J. Microsc., 172, 3, 249-256, (1993)
[47] Wikle, C. K., Hierarchical models in environmental science, Int. Stat. Rev., 71, 2, 181-199, (2003) · Zbl 1114.62367
[48] Wikle, C. K.; Cressie, N., A dimension-reduced approach to space-time kalman filtering, Biometrika, 86, 4, 815-829, (1999) · Zbl 0942.62114
[49] Xu, K.; Wikle, C. K., Estimation of parameterized spatio-temporal dynamic models, J. Stat. Plan. Inference, 137, 2, 567-588, (2007) · Zbl 1102.62104
[50] Zammit-Mangion, A., Cressie, N., Fixed Rank Kriging: The R package, URL https://cran.r-project.org/web/packages/FRK/index.html.
[51] Zimmerman, D. L.; Zimmerman, M. B., A comparison of spatial semivariogram estimators and corresponding ordinary kriging predictors, Technometrics, 33, 1, 77-91, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.