×

Stable phase retrieval in infinite dimensions. (English) Zbl 1440.94010

Summary: The problem of phase retrieval is to determine a signal \(f\in \mathcal{H}\), with \( \mathcal{H}\) a Hilbert space, from intensity measurements \(|F(\omega )|\), where \(F(\omega ):=\langle f, \varphi _\omega \rangle \) are measurements of \(f\) with respect to a measurement system \((\varphi _\omega )_{\omega \in \Omega }\subset \mathcal{H}\). Although phase retrieval is always stable in the finite-dimensional setting whenever it is possible (i.e. injectivity implies stability for the inverse problem), the situation is drastically different if \(\mathcal{H}\) is infinite-dimensional: in that case phase retrieval is never uniformly stable (R. Alaifari and P. Grohs [SIAM J. Math. Anal. 49, No. 3, 1895–1911 (2017; Zbl 1368.42028)]; J. Cahill et al. [Trans. Am. Math. Soc., Ser. B 3, 63–76 (2016; Zbl 1380.46015)]); moreover, the stability deteriorates severely in the dimension of the problem (J. Cahill et al. [loc. cit.]). On the other hand, all empirically observed instabilities are of a certain type: they occur whenever the function \(|F|\) of intensity measurements is concentrated on disjoint sets \(D_j\subset \Omega \), i.e. when \(F= \sum _{j=1}^k F_j\) where each \(F_j\) is concentrated on \(D_j\) (and \(k \ge 2\)). Motivated by these considerations, we propose a new paradigm for stable phase retrieval by considering the problem of reconstructing \(F\) up to a phase factor that is not global, but that can be different for each of the subsets \(D_j\), i.e. recovering \(F\) up to the equivalence
\[F \sim \sum_{j=1}^k e^{\mathrm{i}\alpha_j} F_j.\]
We present concrete applications (for example in audio processing) where this new notion of stability is natural and meaningful and show that in this setting stable phase retrieval can actually be achieved, for instance, if the measurement system is a Gabor frame or a frame of Cauchy wavelets.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
30H10 Hardy spaces
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)

References:

[1] E. J. Akutowicz. On the determination of the phase of a Fourier integral, II. Proceedings of the American Mathematical Society, 8(2):234-238, 1957. · Zbl 0077.30602
[2] R. Alaifari, I. Daubechies, P. Grohs, and G. Thakur. Reconstructing real-valued functions from unsigned coefficients with respect to wavelet and other frames. Journal of Fourier Analysis and Applications, pages 1-15, 2016. · Zbl 1380.42024
[3] R. Alaifari and P. Grohs. Gabor phase retrieval is severely ill-posed. In preparation. · Zbl 1368.42028
[4] R. Alaifari and P. Grohs. Phase retrieval in the general setting of continuous frames for banach spaces. SIAM Journal on Mathematical Analysis, 49(3):1895-1911, 2017. · Zbl 1368.42028 · doi:10.1137/16M1071481
[5] G. Ascensi and J. Bruna. Model Space Results for the Gabor and Wavelet transforms. IEEE Transactions on Information Theory, 5(55):2250-2259, 2009. · Zbl 1367.94076 · doi:10.1109/TIT.2009.2016028
[6] R. Balan, P. Casazza, and D. Edidin. On signal reconstruction without phase. Applied and Computational Harmonic Analysis, 20(3):345-356, 2006. · Zbl 1090.94006 · doi:10.1016/j.acha.2005.07.001
[7] R. Balan and D. Zou. On lipschitz analysis and lipschitz synthesis for the phase retrieval problem. Linear Algebra and its Applications, 496:152-181, 2016. · Zbl 1332.15042 · doi:10.1016/j.laa.2015.12.029
[8] A. S. Bandeira, J. Cahill, D. G. Mixon, and A. A. Nelson. Saving phase: Injectivity and stability for phase retrieval. Applied and Computational Harmonic Analysis, 37(1):106-125, 2014. · Zbl 1305.90330 · doi:10.1016/j.acha.2013.10.002
[9] B. G. Bodmann and N. Hammen. Stable phase retrieval with low-redundancy frames. Advances in computational mathematics, 41(2):317-331, 2015. · Zbl 1316.42035 · doi:10.1007/s10444-014-9359-y
[10] J. Cahill, P. Casazza, and I. Daubechies. Phase retrieval in infinite-dimensional Hilbert spaces. Transactions of the American Mathematical Society, Series B, 3(3):63-76, 2016. · Zbl 1380.46015 · doi:10.1090/btran/12
[11] E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix completion. SIAM Review, 57(2):225-251, 2015. · Zbl 1344.49057 · doi:10.1137/151005099
[12] E. J. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval via wirtinger flow: Theory and algorithms. IEEE Transactions on Information Theory, 61(4):1985-2007, 2015. · Zbl 1359.94069 · doi:10.1109/TIT.2015.2399924
[13] E. A. Carlen. Some integral identities and inequalities for entire functions and their application to the coherent state transform. Journal of functional analysis, 97(1):231-249, 1991. · Zbl 0743.46018 · doi:10.1016/0022-1236(91)90022-W
[14] Y. Chen, C. Cheng, Q. Sun, and H. Wang. Phase Retrieval of Real-Valued Signals in a Shift-Invariant Space. arXiv preprint arXiv:1603.01592, 2016. · Zbl 1436.94017
[15] J. R. Deller Jr, J. G. Proakis, and J. H. Hansen. Discrete time processing of speech signals. Prentice Hall PTR, 1993.
[16] L. C. Evans. Partial Differential Equations. Graduate studies in mathematics. American Mathematical Society, Providence (R.I.), 1998. · Zbl 0902.35002
[17] J. R. Fienup. Phase retrieval algorithms: a comparison. Applied optics, 21(15):2758-2769, 1982. · doi:10.1364/AO.21.002758
[18] J. L. Flanagan and R. Golden. Phase vocoder. Bell System Technical Journal, 45(9):1493-1509, 1966. · doi:10.1002/j.1538-7305.1966.tb01706.x
[19] R. W. Gerchberg. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35:237, 1972.
[20] H. Gottlieb. Eigenvalues of the Laplacian with Neumann boundary conditions. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 26(03):293-309, 1985. · Zbl 0567.35067 · doi:10.1017/S0334270000004525
[21] D. S. Grebenkov and B.-T. Nguyen. Geometrical structure of Laplacian eigenfunctions. SIAM Review, 55(4):601-667, 2013. · Zbl 1290.35157 · doi:10.1137/120880173
[22] K. Gröchenig. Foundations of time-frequency analysis. Springer Science & Business Media, 2013. · Zbl 0966.42020
[23] P. Grohs and M. Rathmair. Stable Gabor phase retrieval and spectral clustering. Communications on Pure and Applied Mathematics, 2018. to appear. Preprint available from arXiv:1706.04374. · Zbl 1460.94022
[24] R. Hempel. On the lowest eigenvalue of the Laplacian with Neumann boundary condition at a small obstacle. Journal of computational and applied mathematics, 194(1):54-74, 2006. · Zbl 1091.35047 · doi:10.1016/j.cam.2005.06.014
[25] M. Humphry, B. Kraus, A. Hurst, A. Maiden, and J. Rodenburg. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nature communications, 3:730, 2012. · doi:10.1038/ncomms1733
[26] N. E. Hurt. Phase retrieval and zero crossings: mathematical methods in image reconstruction, volume 52. Springer Science & Business Media, 2001. · Zbl 0687.94001
[27] P. Jaming. Uniqueness results in an extension of pauli’s phase retrieval problem. Applied and Computational Harmonic Analysis, 37(3):413-441, 2014. · Zbl 1296.81020 · doi:10.1016/j.acha.2014.01.003
[28] Y. Katznelson. An Introduction to Harmonic Analysis. Cambridge University Press, 2004. · Zbl 1055.43001
[29] M. V. Klibanov. Inverse scattering problems and restoration of a function from the modulus of its fourier transform. Siberian Mathematical Journal, 27(5):708-719, 1986. · Zbl 0655.35077 · doi:10.1007/BF00969199
[30] J. Laroche and M. Dolson. Improved phase vocoder time-scale modification of audio. IEEE Transactions on Speech and Audio processing, 7(3):323-332, 1999. · doi:10.1109/89.759041
[31] S. Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics, 65(10):1331-1398, 2012. · Zbl 1282.47009 · doi:10.1002/cpa.21413
[32] S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. Spence. X-ray image reconstruction from a diffraction pattern alone. Physical Review B, 68(14):140101, 2003. · doi:10.1103/PhysRevB.68.140101
[33] L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for convex domains. Archive for Rational Mechanics and Analysis, 5(1):286-292, 1960. · Zbl 0099.08402 · doi:10.1007/BF00252910
[34] V. Pohl, F. Yang, and H. Boche. Phaseless signal recovery in infinite dimensional spaces using structured modulations. Journal of Fourier Analysis and Applications, 20(6):1212-1233, 2014. · Zbl 1305.30016 · doi:10.1007/s00041-014-9352-3
[35] J. Rodenburg. Ptychography and related diffractive imaging methods. Advances in Imaging and Electron Physics, 150:87-184, 2008. · doi:10.1016/S1076-5670(07)00003-1
[36] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev. Phase retrieval with application to optical imaging: a contemporary overview. Signal Processing Magazine, IEEE, 32(3):87-109, 2015. · doi:10.1109/MSP.2014.2352673
[37] A. Stanoyevitch and D. A. Stegenga. Equivalence of analytic and Sobolev Poincaré inequalities for planar domains. Pacific Journal of Mathematics, 178(2):363-375, 1997. · Zbl 0885.30017 · doi:10.2140/pjm.1997.178.363
[38] G. Thakur. Reconstruction of bandlimited functions from unsigned samples. Journal of Fourier Analysis and Applications, 17(4):720-732, 2011. · Zbl 1236.94042 · doi:10.1007/s00041-010-9144-3
[39] I. Waldspurger. Wavelet transform modulus: phase retrieval and scattering. PhD thesis, École normale supérieure, 2015. · Zbl 1361.94025
[40] I. Waldspurger, A. d’Aspremont, and S. Mallat. Phase recovery, MaxCut and complex semidefinite programming. Mathematical Programming, 149(1-2):47-81, 2015. · Zbl 1329.94018 · doi:10.1007/s10107-013-0738-9
[41] H.-C. Wang. Real Hardy spaces of an annulus. Bull. Australian Math. Soc, 27:91-105, 1983. · Zbl 0512.42023 · doi:10.1017/S0004972700011515
[42] G. Zheng, R. Horstmeyer, and C. Yang. Wide-field, high-resolution fourier ptychographic microscopy. Nature photonics, 7(9):739-745, 2013. · doi:10.1038/nphoton.2013.187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.