×

Profile inferences on restricted additive partially linear EV models. (English) Zbl 1432.62114

Summary: We consider the testing problem for the parameter and restricted estimator for the nonparametric component in the additive partially linear errors-in-variables (EV) models under additional restricted condition. We propose a profile Lagrange multiplier test statistic based on modified profile least-squares method and two-stage restricted estimator for the nonparametric component. We derive two important results. One is that, without requiring the undersmoothing of the nonparametric components, the proposed test statistic is proved asymptotically to be a standard chi-square distribution under the null hypothesis and a noncentral chi-square distribution under the alternative hypothesis. These results are the same as the results derived by C. Wei and Q. Wang [Test 21, No. 4, 757–774 (2012; Zbl 1284.62286)] for their adjusted test statistic. But our method does not need an adjustment and is easier to implement especially for the unknown covariance of measurement error. The other is that asymptotic distribution of proposed two-stage restricted estimator of the nonparametric component is asymptotically normal and has an oracle property in the sense that, though the other component is unknown, the estimator performs well as if it was known. Some simulation studies are carried out to illustrate relevant performances with a finite sample. The asymptotic distribution of the restricted corrected-profile least-squares estimator, which has not been considered by Wei and Wang [loc. cit.], is also investigated.

MSC:

62G08 Nonparametric regression and quantile regression
62F03 Parametric hypothesis testing
62G10 Nonparametric hypothesis testing
93E24 Least squares and related methods for stochastic control systems

Citations:

Zbl 1284.62286
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Opsomer, S. J. D.; Ruppert, D., Fitting a bivariate additive model by local polynomial regression, Annals of Statistics, 25, 1, 186-211 (1997) · Zbl 0869.62026
[2] Li, Q., Efficient estimation of additive partially linear models, International Economic Review, 41, 4, 1073-1092 (2002) · doi:10.1111/1468-2354.00096
[3] Jiang, J.; Zhou, H.; Jiang, X.; Peng, J., Generalized likelihood ratio tests for the structure of semiparametric additive models, The Canadian Journal of Statistics, 35, 3, 381-398 (2007) · Zbl 1132.62025 · doi:10.1002/cjs.5550350304
[4] Fuller, W. A., Measurement Error Models (1987), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0800.62413 · doi:10.1002/9780470316665
[5] Cheng, C. L.; Van Ness, J. W., Statistical Regression with Measurement Error (1999), London, UK: Arnold, London, UK · Zbl 0947.62046
[6] Carroll, R. J.; Ruppert, D.; Stefanski, L. A.; Crainiceanu, C. M., Measurement Error in Nonlinear Models (2006), New York, NY, USA: Chapman and Hall, New York, NY, USA · Zbl 1119.62063 · doi:10.1201/9781420010138
[7] Liang, H.; Härdle, W.; Carroll, R. J., Estimation in a semiparametric partially linear errors-in-variables model, The Annals of Statistics, 27, 5, 1519-1535 (1999) · Zbl 0977.62036 · doi:10.1214/aos/1017939140
[8] You, J.; Chen, G., Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model, Journal of Multivariate Analysis, 97, 2, 324-341 (2006) · Zbl 1085.62043 · doi:10.1016/j.jmva.2005.03.002
[9] Li, L.; Greene, T., Varying coefficients model with measurement error, Biometrics, 64, 2, 519-526 (2008) · Zbl 1137.62397 · doi:10.1111/j.1541-0420.2007.00921.x
[10] Wang, X.; Chen, F.; Lin, L., Empirical likelihood inference for the parameter in additive partially linear EV models, Communications in Statistics, 39, 19, 3513-3524 (2010) · Zbl 1202.62045 · doi:10.1080/03610920903315765
[11] Liang, H.; Thurston, S. W.; Ruppert, D.; Apanasovich, T.; Hauser, R., Additive partial linear models with measurement errors, Biometrika, 95, 3, 667-678 (2008) · Zbl 1437.62526 · doi:10.1093/biomet/asn024
[12] Jorgenson, D. W., Econometric Modeling of Producer Behavior (2000), Cambridge, Mass, USA: MIT Press, Cambridge, Mass, USA · Zbl 0987.91501
[13] Wei, C.; Wang, Q., Statistical inference on restricted partially linear additive errors-in-variables models, Test, 21, 4, 757-774 (2012) · Zbl 1284.62286 · doi:10.1007/s11749-011-0279-6
[14] Wei, C. H.; Wu, X. Z., Profile Lagrange multiplier test for partially linear varying-coefficient regression models, Journal of Systems Science and Mathematical Sciences, 28, 4, 416-424 (2008) · Zbl 1174.62390
[15] Zhang, W.; Li, G.; Xue, L., Profile inference on partially linear varying-coefficient errors-in-variables models under restricted condition, Computational Statistics & Data Analysis, 55, 11, 3027-3040 (2011) · Zbl 1218.62038 · doi:10.1016/j.csda.2011.05.012
[16] Wei, C. H.; Liu, C., Statistical inference on semi-parametric partial linear additive models, Journal of Nonparametric Statistics, 24, 4, 809-823 (2012) · Zbl 1284.62241 · doi:10.1080/10485252.2012.716155
[17] Fan, J.; Huang, T., Profile likelihood inferences on semiparametric varying-coefficient partially linear models, Bernoulli, 11, 6, 1031-1057 (2005) · Zbl 1098.62077 · doi:10.3150/bj/1137421639
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.